
BCPL - the language and its
compiler
Martin Richards

Computer Laboratory, University of Cambridge

Colin Whitby-Strevens

Department of Computer Science, University of Warwick

Cambridge University Press

Cambridge

London New York New Rochelle

Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge,
The Pitt Building, Trumpington Street, Cambridge CB2 1RP
32 East 57th Street, New York, NY 10022, USA
296 Beaconsfield Parade, Middle Park, Melbourne 3206, Australia

© Cambridge University Press 1979

First published 1979

Printed in Great Britain by J. W. Arrowsmith Ltd,, Bristol BS3 2NT

Library of Congress cataloguing in publication data

Richards, Martin, 1940-

BCPL, the language and its compiler.

Includes bibliographical references and index.

1. BCPL (Computer program language)
I. Whitby-Strevens, Colin, joint author. II. Title.
QA76.73.B17R5 001.6'424 77-91098
ISBN 0 521 21965 5

Contents

Foreword ix

1 The BCPL philosophy 1

1.1 Introduction 1

1.2 The object machine 1

1.3 Variables and manifest constants 2

1.4 Datatypes 2

1.5 Syntax of BCPL 3

1.6 Modularity 4

1.7 Portability 5

1.8 Summary 5

2 The main features of BCPL 7

2.1 Introduction 7

2.2 A simple BCPL program 7

2.3 Variables and variable declarations 8

2.4 Constants 9

2.5 More input and output 11

2.6 The if-command, relational operators, compound commands 13

2.7 Repetitive commands 14

2.8 The for-command 16

2.9 Arithmetic 17

2.10 TEST and UNLESS; conditional expressions 17

2.11 Vectors 20

2.12 Procedures 21

2.13 Strings, and vectors of characters 23

2.14 Local and global variables 25

2.15 The switchon-command 27

2.16 Conclusions 29

3 Advanced facilities 30

3.1 Pointers 30

3.2 The use of pointers 31

3.3 Handling conceptual data types 34

3.4 Procedure parameters 35

3.5 Recursion 36

3.6 Scope rules: who knows about what 38

3.7 Other controls 38

Contents vi

3.8 Bit-operations 39

3.9 Goto-commands and labels 41

3.10 Typeless names - or context type determination 42

3.11 Procedures as values 42

3.12 Static variables 44

3.13 Separate compilation facilities 45

4 The library, language extensions, and machine independence 47

4.1 Basic input and output procedures 47

4.2 Input and output library facilities 48

4.3 Miscellaneous 52

4.4 LEVEL and LONGJUMP 52

4.5 APTOVEC 54

4.6 Freestore management 55

4.7 The floating-point extension 57

4.8 The field-selector extension 57

4.9 The infixed byte operator 58

4.10 Techniques for machine independence and portability 58

5 Debugging and error handling 60

5.1 Syntax errors 60

5.2 Semantic errors 62

5.3 Runtime error handling 62

5.4 BACKTRACE, MAPSTOHE, and ABORT 63

5.5 TRACE and the profile option 67

5.6 DEBUG: an interactive debugging system 67

5.7 Runtime potholes and traps 74

6 The BCPL lexical and syntax analyser 79

6.1 The lexical analyser 80

6.2 The function L00KUPW0RD 90

6.3 Miscellaneous lexical analysis procedures 94

6.4 The applicative expression tree 98

6.5 RDBL0CKB0DY, RDSEQ, RDCDEFS, and RDSECT 106

6.6 The analysis of expressions 110

6.7 The analysis of definitions 116

6.8 The analysis of commands 118

7 Compiler portability 124

7.1 Introduction 124

7.2 OCODE 125

7.3 The code generator 130

7.4 The bootstrapping process and INTCODE 133

Contents vii

8 Language definition 145

8.1 Program 145

8.2 Elements 145

8.3 Expressions 146

8.4 Section brackets 150

8.5 Commands 150

8.6 Declarations 155

8.7 Miscellaneous features 160

8.8 The formal syntax of BCPL 161

References 167

Index 169

Foreword

BCPL was designed by one of the authors in 1967 (Richards [10]). It underwent

substantial development over the next five years, but since then has remained

relatively stable. It is a small language aimed primarily at systems-programming

applications. Its compiler is portable, and, as a result, it has over the years been

implemented on a large number of machines worldwide. We admit to not

knowing exactly how many different implementations currently exist, but we

know of ones for at least twenty-five different machines.

BCPL is used for a wide variety of systems-programming applications, ranging

over operating systems, compilers and interpreters, data-base packages, simula¬

tors, text processors and editors, algebra systems, and many others. It is used in

undergraduate courses as a vehicle for teaching systems programming.

This book has been written with several distinct purposes in mind. Firstly, it

aims to provide an introduction to the language for people who are experienced

programmers but have not met it before; secondly, it is designed as a handbook

for established BCPL users; thirdly, it will be valuable for those planning to

transfer BCPL to a new machine; and last, but by no means least, it contains much

supporting material for courses concerned with compiler writing.

In serving these diverse needs, the book includes for the newcomer an informal

introduction to the language (chapter two) and a chapter on debugging and error

handling (chapter five). As the user gains experience, the language is discussed in

greater depth in chapters three and four, and chapter eight forms the reference

manual.

We feel that it is necessary to study substantial programs written in a language in

order to learn how to use the language effectively and to develop a good

programming style. For this reason a number of extended examples have been

included in the book. In particular, the whole of chapter six is devoted to a

description of the BCPL syntax analyser, which is a carefully written program that

well exhibits the power of the language.

Finally, chapter seven addresses portability issues, outlining the mechanism

used for transferring the BCPL compiler to a new machine.

IX

X Foreword

Acknowledgements

This book reflects the work of many people besides the authors. In particular,

chapter two is strongly influenced by Brian Kernighan’s C-tutorial [6] and chapter

eight is based on a manual written by J. H. Morris [8], itself based on a well-written

memorandum by R. H. Canaday and D. M. Richie [5]. Chapter seven contains

some material that was previously published in Software portability [4]. Many BCPL

users, too numerous to acknowledge individually, have contributed much by

means of suggestion, advice and comment (particularly in the section on potholes

and traps in chapter five!). However, we are especially grateful to Ken Moody and

David May who have made countless useful comments on the early drafts of the

book. Finally, we are indebted to Charles Lang for his interest, encouragement

and support.

August 1979

Cambridge and Leamington Spa

1

The BCPL philosophy

1.1 Introduction

The language BCPL (Basic CPL) was originally developed as a compiler-writing

tool and, as its name suggests, is closely related to CPL (Combined Programming

Language) which was jointly developed at Cambridge and London Universities.

CPL is described in Barron etal. [1], BCPL adopted much of the syntactic richness

of CPL, and strives for the same high standard of linguistic elegance; however, in

order to achieve the efficiency necessary for systems-programming, its scale and

complexity is far less than that of CPL. The most significant simplification is that

BCPL has only one data type - the bit-pattern - and this feature alone gives it a

characteristic flavour which is quite different from that of CPL and most other

current programming languages.

BCPL has proved itself to be useful as a compiler-writing and systems-pro¬

gramming tool. It has been implemented on a wide range of computers, both

large and small, and has been used for research and teaching computer science as

well as systems programming.

1.2 The object machine

BCPL has a simple semantic structure which is based on an idealised machine.

This design was chosen to make BCPL both portable and easy to define accurately.

The most important feature of the idealised object machine is its store, which

consists of a set of numbered storage cells arranged so that the numbers labelling

adjacent cells differ by one. Each storage cell holds a bit-pattern, called simply a

value. All storage cells are of the same size (a constant of the implementation,

which is usually between 16 and 36 bits). A value that can be stored in a cell is the

only kind of object that can be manipulated directly in BCPL, and every variable

and expression in the language will always evaluate to one of these values.

Values are used by the programmer to model abstract objects of many different

kinds, such as numbers, truth values, strings and functions. Many basic operations

on values are provided. One of these, of fundamental importance in the object

machine, is indirection. This operation takes one operand which is interpreted as

1

2 The BCPL philosophy

an integer and it yields the contents of the storage cell labelled by that integer. This

operation is assumed to be efficient and, as will be seen later, the programmer may

use it freely in his BCPL program.

1.3 Variables and manifest constants

A variable in BCPL is defined to be a name which has been associated with a

storage cell. It has a value, the contents of the cell, which can be changed by an

assignment command during execution. Almost all forms of definition in BCPL

introduce variables, the only exception being the manifest constant declaration.

A manifest constant is the direct association of a name with a value. This

association takes place at compile time and remains constant throughout execu¬

tion. There are many situations where manifest constants can be used to improve

readability with no loss of runtime efficiency.

1.4 Data types

The unusual way in which BCPL treats data types is fundamental to its design. It is

convenient to distinguish between two classes of data types, namely, conceptual

types and internal types. The conceptual type of an expression is the kind of abstract

object the programmer had in mind when he wrote the expression. It might be,

for instance, a time in milliseconds, a weight in grams, a function to transform feet

per second to miles per hour, or it might be a data structure representing an

employee record. It is, of course, impossible to enumerate all the conceptual types

that could exist and it is equally impossible to provide for all of them within a

programming language. The usual practice when designing a language is to select

from the conceptual types a few basic ones and provide a suitable internal

representation together with enough basic operations. The term internal type

refers to any one of these basic types, and the intention is that all the conceptual

types can be modelled effectively using the internal types. A few of the internal

types provided in a typical language are real, integer. Boolean, character, label,

function, etc.

Much of the flavour of BCPL is the result of the conscious design decision to

provide only one internal type, namely the bit-pattern, which we simply refer to as

a value. In order to allow the programmer to model any conceptual type, many

useful primitive operations have been provided. For instance, the ordinary

arithmetic operators + , -, *, and / have been defined in such a way as to model the

integer operations directly. One may think of these operations as ones which

interpret their operands as integers, performing integer arithmetic; alternatively

one may think of them as operations which work directly on bit-patterns and just

happen to be useful for working with integers. This latter approach is closer to the

BCPL philosophy. Although the BCPL programmer has direct access to the bits

The BCPL philosophy 3

comprising a value, the details of the binary representation used to represent

integers are not defined and he would lose machine independence if he per¬

formed non-numerical operations on values he knows to represent integers.

Standard relational operators have been defined and a complete set of bit-

manipulation operations provided. In addition, there are some stranger bit-

pattern operations which provide ways of representing functions, labels, vectors

and structures. All these operations are efficient and each can be translated into

just a few instructions for most machines.

The most important effects of designing the language in this way can be

summarised as follows:

1. There is no need for type declarations in the language, since the internal

type of every variable is already known. This helps to make programs concise and

also simplifies problems such as the handling of actual/formal parameter cor¬

respondence and separate compilation.

2. It gives the language nearly the same power as one with dynamically varying

types, and yet retains the efficiency of a language (like Fortran) with manifest

types. Although the internal type of an expression is always known by the

compiler, its conceptual type can never be. It may, for instance, depend on the

values of variables within the expression, such as the value of an index to an

element of a vector, since such elements are not necessarily all of the same

conceptual type. It should be noted that in languages (such as Algol) where the

elements of arrays must all have the same type, one needs some other linguistic

device in order to handle dynamically varying data structures.

3. Since there is only one internal type in the language there can be no

automatic type checking, and it is possible to write nonsensical programs which

the compiler will translate without complaint. This disadvantage has to be

weighed against the simplicity, power and efficiency that this treatment of types

makes possible.

1.5 Syntax of BCPL

One of the design criteria of BCPL was that it should be a useful systems-

programming tool and it was felt that high readability was of extreme importance.

The readability of a program largely depends on the skill and style of the

programmer; however his task is simplified if he is using a language with a rich set

of expressive but concise constructions and if all the syntactic details of the

language have been carefully thought out.

Readability is aided by using a character set which contains both capital and

small letters. Many implementations expect capital letters to be used in reserved

words, but allow lower-case letters to be used in user-introduced names for

contrast. Any number of characters can be used in an identifier and all are

significant.

4 The BCPL philosophy

The structure of a BCPL program can be simple and direct. The programmer is

able to retain explicit control at all times. The compiler treats the program simply

(and often naively), and the object code produced is always a direct result of what

the programmer writes, without the introduction of hidden overheads.

In BCPL there are three basic commands: assignments, routine commands and

jumps. However, there are a large number of syntactic constructions to control

the flow of control in an algorithm, considerably reducing (to zero in many cases)

the need for labels and goto-commands, and consequently improving readability.

The purpose of a declaration in BCPL is threefold: (a) to introduce a name and

specify its scope; (b) to specify its extent; (c) to specify its initial value. The scope of a

name is the textual region of program in which it may be used to reference the

same data item; this region is usually a block or the body of a routine. The extent of

a variable is the time through which it exists and is associated with a storage cell.

In BCPL, variables may be divided into two classes:

1. Static variables. The extent of a static variable is the entire execution time of

the program. The storage cell is allocated prior to execution and continues to exist

until execution is complete.

2. Dynamic variables. A dynamic variable is one whose extent starts when its

declaration is executed and continues until execution leaves the scope of the

variable. Dynamic variables are usually necessary when using routines recursively.

The class of variable depends on the form of declaration used. There are six

ways of declaring static variables and four ways of declaring dynamic variables.

An expression is used primarily for the computation of the value that it yields and

is syntactically distinct from a command whose purpose is the effect that it has, such

as the updating of a variable by assignment, when it is executed. There is a

corresponding distinction between functions and routines, namely that a function

application is an expression and yields a value, whereas a routine call is a command

and does not. Since a function is so similar to a routine in most other respects, the

word procedure is used to mean either in contexts where the distinction is

unimportant. All procedures may be used recursively, and in order to allow for

this and yet maintain very high execution efficiency, there is the restriction that the

free variables of a procedure (i.e. variables declared outside it) must be static.

1.6 Modularity

With efficient procedure calls, it is good practice to design programs in a modular

fashion. For example, each module could contain the procedures operating on a

conceptual data type, through which all manipulations would be performed,

without fear of the inefficiencies this approach often brings with it. BCPL uses a

form of static storage, called the global vector, which allows separately compiled

modules to reference and call each other and to share data. This facility is not

unlike the Fortran Common storage area. In general, the combination of these

The BCPL philosophy 5

features leads to a better programming style and eases the programming

management problems.

Separate compilation also provides the basis for library facilities. Most imple¬

mentations provide a set of precompiled procedures, each associated with a

separate location in the global vector. The compiler itself knows nothing of the

procedures contained in the runtime system, yet all the user has to do is to ask the

compiler to scan a standard file of global declarations.

1.7 Portability

The compiler itself is written in BCPL and has been transported from machine to

machine many times. It is easy to write portable BCPL programs, if a few simple

guidelines are followed (see chapter four). The compiler is written to operate in

three phases; the end product of the first two is a machine-level program which

operates on the idealised BCPL machine. The third phase has to be rewritten for

each implementation and translates the program for the idealised machine into

one for the available hardware. In addition a small runtime system (possibly as

small as 100 machine instructions) has to be written.

The specially written third phase of the compiler can be compiled and run on an

existing BCPL implementation and, when preceded by the first two phases on that

machine, results in a cross-compiler. The full compiler can now be recompiled,

resulting in a proper compiler for the new machine. Implementing BCPL on a

new machine takes, typically, about two or three man-months.

Most of the standard BCPL library is also written in BCPL, so this too can be

used as a basis for compatibility between machines, and for the inevitable

installation-dependent extensions.

1.8 Summary

The way in which BCPL treats data types allows the programmer great freedom to

organise his symbol tables, property lists, tree structures and stacks in the most

suitable fashion for his own application. Admittedly BCPL only provides the basic

operations and the programmer has to write his own manipulative routines, but

this is easy to do and he does not have the disadvantage of having to use a system in

which inappropriate design decisions have already been made. The philosophy of

BCPL is not one of the tyrant who thinks he knows best and lays down the law on

what is and what is not allowed; rather, BCPL acts more as a servant offering his

services to the best of his ability without complaint, even when confronted with

apparent nonsense. The programmer is always assumed to know what he is doing

and is not hemmed in by petty restrictions. Machine-code programmers tend to

like the way in which BCPL combines the advantages of a high-level language with

6 The BCPL philosophy

the ability to use addresses and bit-patterns without invoking a great weight of

expensive machinery.

When planning and writing software in a commercial environment, it is

necessary to compromise between the quality of a product and its cost. The quality

is affected by many factors such as its size, its speed and efficiency, the usefulness of

its error diagnostics, its robustness and reliability, the accuracy and quality of its

documentation, its maintainability, and in some cases its flexibility and mobility.

Only the first two of these are directly improved by writing in a more efficient

language, while the others tend to suffer from this because the software is more

difficult to write. Although efficiency is important in a systems-programming

language, this consideration should not wholly dominate its design. The

compromise in the design of BCPL between efficiency and linguistic effectiveness

is near optimal for a wide range of software applications, especially those in which

flexibility is required.

2

The main features of BCPL

2.1 Introduction

This chapter is a self-contained introduction for the newcomer to the language.

Not all the features are covered, and many fine details are skipped. The aim is to

present the major constructs and to communicate the flavour of programming in

BCPL. Chapter eight provides a precise and complete, though necessarily terse,

specification of the language. You will also need the local implementation notes

giving details of dialect representations and how to compile and run BCPL

programs.

This chapter assumes that you are familiar with job control, file creation and

editing, etc. in your local operating system and that you have programmed in

some language before.

2.2 A simple BCPL program

A BCPL program consists of one or more procedure declarations (which are

similar to the functions and subroutines of Fortran or the procedures of Algol or

PL/I), perhaps preceded by some global-variable declarations. One of the pro¬

cedures must be called START, and program execution commences by calling it. In

turn it will usually call on other procedures to perform its job, some in the same

program, others included from libraries. A very simple declaration of START

might be as follows:

LET START() BE WRITES("Hello, World")

The straightforward way of communicating data between procedures is by

using parameters. The parameter list is placed in parentheses following the

procedure’s name in the declaration. Here START is a procedure with no

parameters, indicated by ().

A procedure is invoked by writing its name, followed by the list of arguments in

brackets. There is no call-statement as in Fortran or PL/I. WRITES is a library

procedure which will print a string on the terminal (or some other output device.

7

8 Main features

e. g. a printer for offline jobs etc., depending upon the implementation environ¬

ment). In this case it prints

Hello, World

To make it into a complete program, it is necessary to declare the library

procedures at its head. These declarations are usually stored for your convenience

on a system library file, which you incorporate into your program using a

get-directive. So the complete program would be as follows:

GET "LIBHDR"

LET STARTQ BE WRITES("Hello, World")

The actual name of the file will, of course, depend on your

installation.

2.3 Variables and variable declarations

This program adds three integers and prints their sum:

GET "LIBHDR"

LET START() BE

$(LET A, B, C, SUM = 1, 2, 3, 0

SUM := A +B + C

WRITES("Sum is ")

WRITER(SUM)

$)

The section brackets $ (and $) enclose the statements of a procedure, and are, in

many respects, like begin and end in Algol. Statements are usually separated

either by a semicolon or by the end of the line.

The let-declaration is used to introduce program variables as well as pro¬

cedures. All variables must be declared before they are used (i.e. their names

written in commands etc.). The declaration

LET A, B, C, SUM = 1, 2, 3, 0

introduces four new local variables A, B, C and SUM and initialises them to contain 1,

2, 3 and zero respectively.

Variable names may have any number of characters, chosen from A-Z, 0-9 and

. (full stop), but must start with a letter. The basic words of the language (e.g. LET)

cannot be used as variable names. Various implementations allow lower-case

letters and/or use an underline character instead of a full stop.

Main features 9

BCPL does not have the type-association conventions for variables that are

found in many languages (e.g. integer, real, character, Boolean). It is up to you

what ‘type’ of information you store in the variables of your program. However,

many of the various operations that you can perform will make assumptions about

the contents of your variables. For example, the +, as in A+B, adds together the

contents of the variables A and B, making the assumption that they contain

integers and that an integer result is required.

Assignment commands are much the same as in Algol, Fortran or PL/I. Note

the use of : =. For simple arithmetic expressions, the usual operators (+, - etc.) are

used. A longer treatment of expressions is given later; meanwhile be guided by

your experience with other programming languages.

The library procedure WRITEN outputs its parameter as an integer.

BCPL programs are written in free format. You can put several statements on a

single line, or use several lines for a single statement. Semicolons must be used to

separate statements on a single line to resolve ambiguity and can also be included

for greater clarity, ‘end of line’ has the effect of terminating a statement if

syntactically this is possible. So if you want to split a statement over two lines, then

the split may be at any point where the statement could not be terminated, for

example after a + or -. Spaces and newlines may not be inserted in the middle of

names or operators. However, as a matter of style, they should be used frequently

to enhance readability.

Comments are introduced by the character pair //. All characters from (and

including) // up to the end of the line are ignored by the compiler.

2.4 Constants

We have already seen decimal integer constants in the previous example. Constants

may also be expressed in octal, introduced by the character #. Thus #777 is an octal

constant, with decimal value 511.

A character constant is enclosed in single quotes and denotes the implementation-

dependent small-integer value that represents that character. For example,

'A' =65 on an ASCII implementation, and 'A' = 193 on an EBCDIC imple¬

mentation. Ordinary variables may be used to store character constants, for

example

LET CHAR = ‘A’

A special mechanism is used to represent hard-to-get-at or invisible characters.

This uses an asterisk followed by a printable character. The most common use of

this mechanism is * IT to represent the ‘end of line’ character. This is a special

character which is produced at the end of each line of input and, when printed,

moves the printing unit to the start of the next line. Other uses of the asterisk

notation are *P for ‘end of page’, *S for space, *T for tab, *B for backspace, * 1 for

10 Main features

single quote mark and * * for * itself. Your implementation may have even more

(depending on the character set used).

A valuable feature of BCPL to help you write in a clear programming style is the

ability to use names to represent constants. These are called manifest constants. The

value associated with a manifest constant stays fixed, so you cannot assign to it. The

compiler knows the value, so it can generate efficient code. No extra store is

wasted. Above all, it is much clearer to see what a program is doing if you use a

well-chosen name instead of an an arbitrary number. Here is a skeleton of a

program, not using manifest constants:

LET DAY = 0

DAY := 1

DAY := 5

We are obviously considering different days, but are they days of the week, or

days since some specific date? All becomes clear when we rewrite the program

using manifest constants:

MANIFEST $(SUNDAY = 0; MONDAY = 1; TUESDAY = 2

WEDNESDAY = 3; THURSDAY = 4; FRIDAY = 5

SATURDAY = 6

$)
LET DAY = SUNDAY

DAY := MONDAY

DAY := FRIDAY

You should also make less mistakes when using manifest constants. In many of

the program extracts used as examples throughout this book we will use manifest

constants, assuming that appropriate declarations have been made earlier in the

program.

Exercises I

1. Which of the following are legal BCPL variable names?

DAY LET 2ND TAX. RATE TAX-RATE .END

Main features 11

2. Which of the following are legal BCPL constants?

178 ' *T' 'TT' '*' 26 #178 #0 'A' '' ' ' ' ' ' ' ’

3. Correct the syntax errors in the following program:

LET START BE

$(LET A B C := 1, 1 A’ , 'B', #37

MANIFIST $(SUM = A $)

SUM = SUM + A + B - C

LET RESULT = 2 * SUM

WRCH RESULT $)

$)

4. Write a program to print your name, and run it on your local BCPL system.

2.5 More input and output

The BCPL input/output (I/O) system is based on the idea of streams. A BCPL

stream should be regarded simply as a sequence of characters. There is no record

structure superimposed by BCPL. Normally one input stream and one output

stream are selected at any moment. All I/O operations take place on the currently

selected input or output stream. However, the mechanism for specifying the

original source and final destination is very much dependent on the operating

environment. Usually a suitable set of defaults is provided so that simple use of

BCPL has expected results.

To override these defaults, the SELECTINPUT library routine is used to select

the stream from which subsequent input is to be taken. Similarly, SELECTOUTPUT

selects the stream to which subsequent output is to be sent.

RDCH and WRCH form the basis of the BCPL I/O library. RDCH fetches one

character from the currently selected input each time it is called, and returns that

character as its value. RDCH yields the character ' *H1 at the end of each input line.

When it reaches the end of the selected input, it returns a special value repre¬

sented by the manifest constant END0TREAMCH (which will be defined in LIBHDR).

WRCH outputs one character to the currently selected output each time it is

called. Successive calls on the output library procedures will place more characters

onto the current line until the character ' *N' is transferred. Thus

WRITES("This is")

WRITES(" line one*N")

12 Main features

will produce

This is line one

whereas the procedure call

WRITES("Each*Nword*Non*N'a*N'line*R")

will produce

Each

word

on

a

line

Similarly, on input, characters are read one at a time as you ask for them. In

illustrating this we introduce the input library function READN, which ignores all

layout characters on the input stream up to the first digit. It then reads a number

(terminated by a non-digit). The sequence

A := READN()

B := READN()

C := READRO

has the same effect if the input takes the form

12 3

or

1

2

3

When designing an interactive program, you should check whether your local

BCPL system (and/or operating system) will permit character-by-character inter¬

action. On many systems, a complete line has to be typed before your BCPL

program is allowed to read any characters. Equally, on output, you may find that

each line is buffered by the system and will only appear on the terminal after your

program has output a newline character.

Main features 13

2.6 The if-command, relational operators, compound commands

The main condition-testing statement in BCPL is the if-command:

C := RDCH()

IF C='?' THEN WRITES("Why did you type a questionmark?*N")

The condition to be tested is any expression. The word THEN is followed by a

command. The expression is evaluated, and, if its value is true the command is

executed. The representation of ‘true’ and ‘false’ is implementation dependent. If

your expression does not evaluate to either true or false, then it is implementation

sensitive whether the command is executed or not.

The character = is one of the relational operators in BCPL. Here is the complete

set:

= equal to (. EQ. to Fortraners)

-1= not equal to

>= greater than or equal to

<= less than or equal to

> greater than

< less than

The relational operator performs an arithmetic comparison of the two expres¬

sions either side, and yields a Boolean result (true or false). You can write extended

tests in BCPL, e.g.

C := RDCH()

IF '0'<=C<='9' THEN PROCESS.DIGIT()

Here the procedure PROCESS . DIGIT is called if the character read was a digit.

(N.B. this assumes that the digits have numerically consecutive representations in

the character set).

Tests can be combined with the operators 8c (and), | (or) and -i (not). For

example we can test whether a character is a space, tab or newline with

IF C='*S' | C='*T' | C='*N' THEN . . .

BCPL provides a complementary command to IF, called UNLESS. This has the

same format, but the command following is executed if the expression evaluates to

false.

14 Main features

You can store truth values in any BCPL variable, so the following construct is

both valid and meaningful:

T := A > B

IF T THEN WRITES("A was greater than B when T was set")

One of the most useful features of BCPL is that one form of command is a set of

statements enclosed in a $ ($) pair. As a simple example, suppose that we wish to

ensure that A is bigger than B, as part of a sort procedure. The interchange of A

and B takes three statements in BCPL, which can be grouped together as a unit by

$ (and $):

IF A < B THEN

$(LET T = A

A := B; B : = T

$)

As a general rule in BCPL, anywhere that you can write a simple command, you

can use a compound command or a block. The set of statements enclosed in $ ($)

is called a compound command unless the statements start with some declarations, in

which case the whole thing is called a block.

$ (and $) are called section brackets. BCPL has a feature which allows section

brackets to be tagged with identifiers. The compiler attempts to match the tags on

corresponding pairs of opening and closing section brackets. If necessary, a

tagged closing section bracket will automatically cause extra section brackets to be

inserted immediately preceding it, closing off inner sections.

The ability to replace single statements by complex ones at will is one feature

that makes BCPL much more pleasant to use than, say, Fortran. Logic (like the

exchange in the previous example) which would require GOTOs and labels in

Fortran can, and should, be written in BCPL without any, using compound

commands and blocks.

Compound commands should not be allowed to grow too large. Your pro¬

gram’s comprehensibility can often be increased by using more procedures and

fewer blocks provided that the names of the procedures are chosen carefully.

Every few lines of a properly constructed program will have a name which states

its purpose. If your program seems to take the form of just a large number of

blocks, then look at it carefully to see if parts of it can be logically separated.

2.7 Repetitive commands

BCPL has a range of repetitive commands. First we introduce WHILE and

REPEATWHILE. The following is an extract from the READN library routine

Main features 15

(described in detail in chapter four):

WHILE ' 0 ' <=iCH<= ' 9 ' DO

$(SUM := 10 * SUM + CH - '0'

CH := RDCH() $)

The while-command is a loop whose general form is

WHILE expression DO command

Its meaning is

(a) evaluate the expression

(b) if its value is true, execute the command and go back to (a)

Because the expression is tested before the command is executed, the command

can be executed zero times. This feature is often desirable. As in the if-statement,

the expression and the command can both be arbitrarily complicated. In the

example, CH is tested for a character value representing a digit. If so, the

accumulated number value is multiplied by 10 and the numerical value of the digit

added in. The next character is read, and the process repeated for as long as the

‘next’ character satisfies the test for a digit.

Sometimes it is desirable to perform the testing after the execution of the

command, not before, ensuring that the command is obeyed at least once. For this

we can use REPEATWHILE, as in this extract, also from READN:

CH := RDCH() REPEATWHILE CH='*S' |

CH=' *T' |

CH=' *N'

The general form of the repeatwhile-command is

command REPEATWHILE expression

Its meaning is

(a) execute the command

(b) evaluate the expression, if it is true then go back to (a)

In this extract, each character is tested for *S, *T or *N after it has been read

from the input. If the test succeeds then another character is read. This is used in

READN to ignore leading layout characters.

16 Main features

There are three other looping commands with similar formats:

UNTIL expression DO command

command EEPEATUNTIL expression

command REPEAT

The until- and repeatuntil-commands act similarly to while- and repeatwhile-

commands, except that they loop if the expression is false. The statement

command REPEAT

is equivalent to

command REPEATWHILE TRUE

This construction is in practice very useful when used in conjunction with various

loop-exiting facilities (described later). An example of this is given in section 2.12.

2.8 The for-command

The for-command includes the initialisation and increment parts of the loop

together at the start of the loop. The two alternative forms are

FOR N = expression 1 TO expression2 BY constant-expression

DO command

and

FOR N = expression 1 TO expression2 DO command

A new variable N is declared and initialised to expression 1. It is then tested against

expression2 to see if the for-command should be terminated. If not, the command

is executed and N is incremented by constant-expression (assumed equal to 1 if not

present). The test is then performed again, and so on.

Several properties of FOR should be noted. Firstly, the step-length must be a

constant (or constant-expression). Secondly, N can be used within the controlled

command (you can assign to it if you really want to - this will interfere with the

number of times the loop is executed) but it cannot be accessed outside the whole

construction. It is a new variable (different from any other variable N in the

program) and it exists only for the duration of the for-command. It is referred to

as the controlled variable. Thirdly, expression 1 and expression2 are evaluated only

at the beginning of the command, not each time round the loop. Fourthly, if

Main features 17

constant-expression is positive, then the test is made to see if N is greater than

expression2, but if constant-expression is negative, the test is made to see if N is

less than expression2.

2.9 Arithmetic

The arithmetic operators are (multiplication), / (truncating integer

division), and the remainder (or modulo) operator REM.

FOR I = 0 TO COUNT DO

$(IF I REM 8=0 THEN WRCH('*N')

WRITEN(I)

$)

In this example a newline is output every eight times round the loop for layout

purposes. Integer representation is implementation dependent, and overflow in

arithmetic operations is ignored in BCPL. All the arithmetic operators work on

integers and the results of / and REM are implementation dependent unless both

operands are positive.

2.10 TEST and UNLESS; conditional expressions

The test-command is a variation of the if-command, allowing you to specify one of

two alternative commands to be obeyed. Here are the two commands for

comparison:

IF expression THEN command 1

TEST expression THEN command 1 ELSE command2

There is also a third from:

UNLESS expression DO command2

The effect of these is as follows: The expression is evaluated. A true evaluation

results in command 1 being executed (for IF and TEST), whereas a false evaluation

results in command2 being executed (for TEST and UNLESS). Thus to set X to the

minimum of A and B we may write

TEST A < B THEN X := A ELSE X := B

The words THEN and DO are synonyms, and usually may be omitted.

18 Main features

BCPL provides an alternative form of conditional which is often more concise.

It is called the conditional expression as it is a conditional which produces a value,

and it can be used anywhere an expression is allowed. The value of

A<B -> C, D

is C if A is less than B, otherwise it is D. The general form is

expression 1 -> expression2, expressions

This means

(a) evaluate expression 1

(b) if expression 1 is true, then the value of the whole conditional expression is

expression2, otherwise it is expression 3.

To set X to the minimum of A and B we can now write

X := A<B -> A, B

This can be extended in an obvious manner to find the minimum of A, B and C, i.e.

X := A<B -> A<C -> A, C,

B<C -> B, C

In the following example, which is an extract from the WRITEF library routine,

it is desired to set N to the integer value represented by the hexadecimal character

in CH:

N := ' 0' <=CH<='9' -> CH - ' 0' ,

10 + CH - 'A'

If N contains a digit, then the required value is obtained by subtracting the value of

the character ’ 01, otherwise it is obtained by adding 10 and subtracting the value

of the character ' A' .

Test-commands can be used for constructions that branch in one of several ways

and then rejoin (a common programming structure) as follows:

TEST . . .

THEN . . .

ELSE TEST . . .

THEN . . .

ELSE TEST . . .

THEN . . .

ELSE . . .

Main features 19

The conditions are tested in order and exactly one alternative is executed. This

will be the first one whose TEST . . . THEN is satisfied. When this alternative

has finished, the next statement to be executed is the one after the one following

the final ELSE . If no action is to be taken should none of the tests be satisfied,

then the final TEST . . . THEN . . . ELSE should be changed to

IF . . . THEN . . .

As a final example of the use of TEST and IF, the following extract from the

BCPL syntax analyser (described in full in chapter six) checks that tagged section

brackets are correctly matched:

TEST TAG = WORDNODE

THEN NEXTSYMB()

ELSE IF 10RDN0DE=NULLTAG THEN

$(SYMB i=0

SYNREP0RT(9) $)

Exercise II

1. (a) Write a BCPL program that will copy input to output on a character-by¬

character basis.

(b) Modify your program to condense multiple spaces into a single space and

multiple newlines into a single newline.

(c) Modify your program so that trailing spaces are removed and blank lines

omitted.

2. Write a program to merge two input streams of sorted numbers.

3. Write a program fragment that has the same effect as the for-command, but

using LET and UNTIL. Check your answer with chapter eight, page 152.

4. What is the effect of each of the following for-commands?

(a) FOR I = J TO J+2 DO J := J + 1

(b) FOR I = 5 TO 0 DO . . .

(c) FOR I = -5 TO -3 DO . . .

(d) FOR 1=1 TO 5 DO I := I + 1

5. Is the following BCPL program,ambiguous?

IF A THEN TEST B THEN IF C THEN P() ELSE Q()

Under what conditions is the call on: (a) P executed; (b) Q executed; (c) both P

and Q executed; (d) neither P nor Q executed? Write these conditions as BCPL

expressions.

20 Main features

2.11 Vectors

In BCPL, as in many other programming languages, it is possible to set up an

array of elements accessed using only one variable name. Only one-dimensional

arrays are provided in BCPL, and they are called vectors. You can make a vector of

four elements with the declaration

LET V = VEC 3

Many programming languages use parentheses or [] to enclose subscripts, but

in BCPL the operator ! is used to provide a compact notation which distinguishes

subscription from procedure calls. Subscripts begin at zero, and the elements of V

are

V! 0, V! 1, V! 2 and V! 3

The character ! is usually pronounced by BCPL users as ‘pling’ in this context.

! takes a precedence over other operators, so parentheses are required if the

subscript is a compound expression. For example

V! I+J does not mean V! (I+J)

but(V!I)+J

As an example, the following routine outputs a positive number, storing the

individual digits in a vector:

LET WRITEPN(N) BE

$(LET T = VEC 20

LET 1=0

T!I, N, I : = N REM 10, N/10, 1+1 REPEATUNTIL N=0

FOR J = I - 1 TO 0 BY -1 DO WRCH(T!J + '0')

$)

Note that in the LET V = VEC . . . declaration you write the maximum

subscript. This must be a constant, so you can’t let your program choose the size of

the vector. You can, however, write a constant-expression, involving constants and

some operators. For example, if ROWS and COLUMNS are manifest constants you

can write

LET V = VEC ROWS*COLUMNS

As with ordinary variables, you can imagine that the contents of the vector’s

elements are of any type you choose. However, note that, unlike ordinary

Main features 21

variables, there is no way of initialising the contents of a vector when it is declared.

In general each element of a vector will contain non-zero rubbish until you assign

a value to it.

Another warning about vectors: you should not try to use the same name for a

vector and an ordinary variable, and should only use the vector’s name without a

subscript with the greatest of care (e.g. passing the vector as a parameter as in

Algol) until you understand the section on pointers in chapter three. It is both

legal and full of pitfalls for the unwary.

2.12 Procedures

Suppose we wish, as part of a large program, to form a histogram of the integers

less than 100 (terminated by a negative integer) on some input stream. Let us also

count all larger integers. Since this is an isolated part of the program, good

practice dictates making it a separate procedure. Here is one way:

GET "LIBHDR"

MANIFEST $(NUM = 100 $)

LET STAHTO BE

$(LET HISTOGRAM = VEC NUM

COUNT(HISTOGRAM, NUM) // form histogram

WRITES(. . .)

$)

AND COUNT(ARRAY, SIZE) BE

$(FOR I = 0 TO SIZE DO

ARRAY! I :=0 // all counts set to zero

$(LET C = READN() // read next number

IF C < 0 RETURN // input terminated by neg number

IF C>SIZE THEN C := SIZE // deal with large numbers

ARRAY!C := ARRAY!C + 1

$) REPEAT

$)

We have seen many examples of calling procedures, so let us concentrate on

how to define one. COUNT has two parameters, ARRAY and SIZE. These are called

the formal parameters of the procedure. When COUNT is called, they will be passed

the values of the corresponding actual parameters used in the call. Note that we do

not have to mention that ARRAY is a vector. The fact that we use it as such within

the procedure is good enough for BCPL. However, it is the programmer’s

22 Main features

responsibility to make sure that if a parameter is treated as a vector inside a

procedure, then a vector is provided in the procedure call.

The effect of the parameter-passing mechanism in BCPL is that simple variables

are passed by value, and vectors by reference. Thus the routine COUNT can access

the elements of the vector HISTOGRAM by using the ! operator on the parameter

ARRAY. However, SIZE can be regarded as a local variable, initialised to the value

of the corresponding actual parameter (in this case 100, the value of NUM). The

actual parameters can, in general, be expressions.

The return-command simply says ‘go back to the calling procedure’. If RETURN

is the last command of the procedure, then it can be omitted.

The LET procedure-definition

AND procedure-definition

construction is simply a method of defining two procedures simultaneously.

Usually you can access only those procedures declared either simultaneously with

or prior to the calling procedure. In this case we used AND and so were able to call

COUNT from within START, although the procedure was defined textually later in

the program.

If we wish to return a value at the end of forming the histogram, then COUNT has

to become a function, and is defined as a value-returning object producing a

result:

LET COUNT(ARRAY, SIZE) = VALOF

$(LET NUMBER = 0

FOR 1=0 TO SIZE DO ARRAY II := 0

$(LET C = BEADNO

IF C<0 RESULTIS NUMBER

IF C>SIZE THEN C := SIZE

ARRAY IC := ARRAY IC + 1

NUMBER := NUMBER +1 // count the numbers

$) REPEAT

$)

The block following VALOF is executed in the normal way until a command of

the form

RESULTIS expression

is met. This expression then produces the value for the whole function. In fact the

construction

VALOF $(...

RESULTIS expression

$)

Main features 23

can be used to produce a value anywhere a value is needed (e.g. on the right-hand

side of an assignment command). An expression can be used as the body of a

function definition; for example, to define the function which yields the minimum

of three values we can write

LET MIN(A, B, C) = A<B -> A<C -> A, C,

B<C -> B, C

The parameter-passing mechanism in BCPL contains a subtlety which can trap

unsuspecting programmers used to other programming languages. As simple

variables are passed by value, a copy is made of the actual parameters for the called

procedure to use. Assigning to the formal parameters will not change the values of

the original variables specified as actual parameters. This is similar to the Algol

call-by-value mechanism, and in contrast to the Fortran parameter-passing

mechanism.

BCPL has been carefully designed so that function and routine calls bring little

overhead. This is a by-product of the lack of parameter checking and the fact that

all parameters are passed by value. By using routines properly, you will increase

readability, save space taken up by compiled code, produce better modularity, all

at little cost in terms of runtime overhead.

2.13 Strings, and vectors of characters

Text may be stored in a vector using one element for each character. However, we

usually need only between 6 and 9 bits for each character while a store location

may be anything from 16 to 64 bits wide (both character size and word size depend

on implementation). Plainly it is far more economical to store text by placing

several characters in each word. BCPL strings are stored in this way.

In BCPL, we use double quotes around a character string. The compiler

permanently allocates a vector of store into which it packs the string. The BCPL

value of the string is, in fact, the address of the first word of the vector. This value

can be assigned like any other. Thus

S := "My string"

WEITES(S)

has the same output effect as

WRITES("My string")

Sometimes it is necessary to access the individual characters of a string, and you

will find a pair of library procedures called GETBYTE and PUTBYTE are provided

24 Main features

to help you. Alternatively you can use UNPACKSTRING to lay a string out in a

vector one character to a word, and PACKSTRING to pack it up again. After

unpacking your string, you will discover that the first word contains a count of the

number of characters in the string proper, which starts at the second word.

As an example, we give the library routines WRITES, UNPACKSTRING and

PACKSTRING:

LET WRITES(S) BE

FOR I = 1 TO GETBYTE(S, 0) DO WRCH(GETBYTEf S, I))

LET UNPACKSTRINGf S,V) BE

FOR I = 0 TO GETBYTE(S, 0) DO V!I := GETBYTE(S.I)

LET PACKSTRING(V, S) = VALOF

$(LET N = ?! 0 A #XFF // extract least significant 8 bits

LET SIZE = N / BYTESPERWOHD

S!SIZE := 0 // pack out last word with zeroes

FOR I = 0 TO N DO PUTBYTE(S, I, V!I)

RESULTIS SIZE

$)

For both PACKSTRING and UNPACKSTRING two parameters are needed, one

giving the string to be operated upon, the other a vector for the result. From this

example you will have noticed that packed strings are stored in perfectly ordinary

vectors. If you quote a string in your program, then the compiler automatically

allocates a vector for it. However, you have to supply your own vectors for the

PACKSTRING and UNPACKSTRING procedures.

The following extract from the BCPL lexical analyser is used as part of the table

initialisation program (for full details see chapter six). It takes a string of the form

" W0RD1/W0RD2/W0RD3/ . . ./WORDn//", and, for each word in turn, forms a

string and calls the lookup procedure LOOKUPWORD. The vectors CHARV and

WORDY are assumed declared, and the original string is identified by WORDS.

LET I, LENGTH =1,0

$(LET CH = GETBYTE(WORDS, I)

TEST CH='/' THEN $(IF LENGTH = 0 THEN RETURN

CHARV!0 := LENGTH

WORDSIZE := PACKSTRING(CHARV, WORDV)

LOOKUPWORD()

LENGTH := 0 $)

ELSE $(LENGTH := LENGTH + 1

CHARV!LENGTH := CH $)

I := I + 1

$) REPEAT

Main features 25

Exercises III

1. Complete the histogram program outlined in section 2.12, and run it on

some suitable data.

2. Explain what happens on the call of PACKSTRING from within the following

program fragment:

LET V = VEC 3

V! 0, V!1, VI2, V!3 := 3, 'A', 'B' , 'C'

PACKSTRING(V, V)

The final word containing the string is padded out with zeroes. This allows

strings to be compared for equality on a word-by-word basis. (For an example of

this, see LOOKUPWORD in the BCPL lexical analyser, described in chapter six.)

Discuss whether it is worth modifying the definition of PACKSTRING so that it acts

sensibly for the above program.

3. Write a program to read some suitable piece of text and count the occur¬

rences of A, AN, AND, ANDY, THAN, HAND and HANDY, treating each as (a) distinct

words; (b) character strings (i.e. so that HAND increments the counts for A, AN, AND

and HAND).

2.14 Local and global variables

Consider the following pair of procedures:

LET F() BE

$(LET X, Y = 0, 0

GO

$)
AND G() BE

$(LET X = 0

$)

The three variables X and Y in F, and X in G are local to their own procedures.

The X in F is unrelated to the X in G. Furthermore all three variables have no

memory from one call to the next of the encapsulating procedures and are

initialised to the stated value on each entry. They are often referred to as dynamic

variables.

26 Main features

A further crucial point to note is that the dynamic variables of one procedure

cannot be used in an embedded procedure:

LET F() BE

$(LET X = 0

LET G() BE

$(.

$)

$)

// X cannot be used in here

// but it can here

The technical way of expressing this rule is to say that BCPL does not support

dynamic free variables; in other words, inner procedures are not permitted to use

the dynamic variables of outer procedures. You should probably avoid using

inner procedures in your initial attempts at using BCPL, and so avoid this problem

altogether.

As opposed to local variables, global variables (globals) are potentially available to

all procedures. The BCPL mechanism is to store all global variables in a special

global vector, in a fixed place in store. The purpose of the global vector is to permit

communication between separately compiled modules of a BCPL program (see

chapter three). The program refers to the global variables by name in the usual

way, but first there must be a declaration specifying which name goes with which

location within the global vector. For this purpose, the locations in the global

vector are numbered (usually from zero). In each installation some globals will be

reserved for library procedures, so by convention you should avoid allocating

these to your own global variables. Typically you can use locations from 100

upwards in the global vector.

To associate a name with a global-vector location (and hence create a global

variable), a global-declaration is used. The declaration:

GLOBAL $(NUMBER:100; COUNTER:101 $)

associates NUMBER and COUNTER with locations 100 and 101 in the global vector.

They may subsequently be used anywhere in the block containing the global-

declaration, including embedded functions and procedures. The newcomer to

BCPL is advised to declare all global variables together at the start of the program.

Note that if you declare a variable called NUMBER as a local variable of some block

then you introduce a new variable, rendering the global of that name temporarily

inaccessible.

Much of the contents of the standard header file (here called LIBHDR) contains

the global-declarations for the standard precompiled library files. The exact

mechanism for combining program modules and the library procedures is

obviously dependent on the operating environment.

Main features 27

In some implementations, extra directives are required to state which library

procedures should be incorporated; e.g. a program might start

GET "LIBHDR"

NEEDS HDCH, WECH, WRITES

Without such a mechanism, the whole of a possibly substantial library would have

to be incorporated into every program. Check with your installation notes for

details.

2.15 The switchon-command

The switchon-command provides an elegant and efficient alternative to multiway

testing using if- or test-commands. When tests are like this,

TEST C=1 a' THEN . . .

ELSE TEST C='b' | C='C' THEN . . .

ELSE . . .

where we are testing a computed value against a series of constants, then the

switchon-command is often clearer and gives better compiled code. This example

can be rewritten

SWITCHON C INTO

$(// the body of a SWITCHON is always a compound command

// ; you cannot put declarations here!!!

CASE 'a' : ...

ENDCASE

CASE 'b1 :

CASE ' c' : ...

ENDCASE

DEFAULT: : ... //if none of the cases match

ENDCASE

$)

// ENDCASE brings us here ,

The case-labels are used to label the code defining the various actions we want.

Readability is often enhanced by using manifest constants in case-labels. The label

DEFAULT is used if none of the other cases contain the computed value of the

expression following SWITCHON. DEFAULT is optional; if it is not there, and none

of the cases match, then control passes directly to the next command after the

switchon compound command.

28 Main features

The endcase-command says that the work of the switchon-command has been

completed, and control is to be passed to the next command after the compound

command. It is used because the case labels do not have the effect of terminating

the previous case, i.e. after the statements at one label, control continues on to

those textually following unless action is taken explicitly to escape. A further

consequence of this simple approach is that it is possible to have multiple cases on a

single statement, and it is possible to use other methods of transferring control

other than ENDCASE.

The switchon-command is one of BCPL’s aids to writing readable programs.

However, it can be spoilt if each case label is attached to a large number of

commands. Nine or ten lines of code should be the maximum. Where more are

required, then they should be embedded in a routine which is called from the

case-label (even if this is the only call to it in the whole program).

As an example, we give extracts from the compiler routine NEXTSYMB, which

reads the next symbol from the input, setting the global SYMB to represent the

symbol type. For the full text, see section 6.1.

LET NEXTSYMB() BE

$(1 NLPENDING := FALSE

$(2 . . .
SWITCHON CH INTO

CASE ' *p' :

CASE ' *N' : LINECOUNT := LINECOUNT + 1

NLPENDING := TRUE // ignorable characters

CASE 1 *t ' :

CASE ' *S' : RCH() HEPEATWHILE CH='*S'

LOOP

CASE '0' : CASE '1':CASE '2':CASE '3':CASE '4' :

CASE ' 5' : CASE 16':CASE '7':CASE '8':CASE ' 9' :

SYMB := S.NUMBER

READNUMBER(10)

RETURN

CASE ' ['

CASE SYMB

CASE '] '

CASE SYMB

$)S

$)2 REPEAT

RCH()

$)1

= S.LPAREN; BREAK

= S.RPAREN; BREAK

Main features 29

2.16 Conclusion

This ends the discussion on the main features of BCPL. You now know enough

to write quite substantial programs, and it would probably be a good idea if

you paused long enough to do so. The next chapter will discuss some more

constructions, useful but not essential.

Exercises IV

1. Write a program to show that the 13th day of the month falls more often on a

Friday than any other day of the week. The 1st of January 1973 was a Monday.

You should aim at producing the clearest possible program, not the fastest. (Hint:

there are an exact number of weeks in four centuries.)

2. Write a program to generate primes in the range 1-1000 using the sieve of

Eratosthenes. (Initialise a vector to contain the integers 1,2,..., 1000. Consider

each element in turn. If it is as initialised then it is prime, so print it and cancel all

its multiples in the vector. If it is cancelled then it is not prime.)

3. Write a BCPL program to generate the first twenty terms in the Fibonacci

series (1,1,2, 3, 5, 8,..., each term being the sum of the previous two terms), and

to compute the ratio R of any two consecutive terms. ‘Plot’ the successive values of

R on the output device.

3

Advanced facilities

In this chapter we will be discussing representations as well as facilities, and we

shall be revisiting some of the features discussed in chapter two.

3.1 Pointers

A pointer in BCPL is the address of a word of store. It is rare indeed when we care

what the specific address itself is, but pointers are commonly used to get at the

contents of store. The unary operator S is used to produce the address of a

variable. Thus

LET A, B = 0, 0

B : = 3 A

puts the address of A into the variable B. A has not changed in any way, and we can

still access A by writing its name. However we can now also access A indirectly by

applying the ! operator to B.

LET A, B, C = 0, 0, 0

B ! — at A

C := 1B

The construction ! B means ‘access the object pointed to by B’. The effect here is

that we copy the contents of A into C. We could also change the contents of A by

accessing it indirectly via B:

LET A, B = 0, 0

B := 3A

!B := 5

Here the effect is to put the value 5 into A, as it is the object pointed to by B.

In BCPL it is defined that consecutive words of store have numerically consecu¬

tive addresses. Thus if we know that B points to the first of several consecutive

locations, then B+l will point to the second location, B+2 to the third etc.

30

Advanced facilities 31

With this knowledge, we can explain BCPL vectors more fully. The declaration

LET V = VEC 5

establishes (i) a vector of six consecutive locations, and (ii) a separate variable V

which is initialised to the address of the first location of the vector. Figure 3.1

shows a diagrammatic represention of this.

V! 0

V! 1

V! 2

V! 3

V! 4

V!5

Fig. 3.1

V points to the first element of the vector. This means that the value given by

V +1 is the address of the second element of the vector. Hence to access this

element we should write

!(V+1)

This would work, but, simply because this is rather cumbersome, the shorthand

V! 1 is used.

In this example, V behaves like any other local variable, the main difference

being that it is initialised by the compiler as a pointer. Hence its value can be copied

into another variable (which as a result will also point to the same vector), or passed

as a parameter to a procedure.

3.2 The use of pointers

There are two other important uses of pointers to represent BCPL language

constructs. The first is that the value of a string is a pointer to the vector in which

the string is stored. Thus we could write the assignment command

VEGETABLE := "carrot"

and then

WRITES(VEGETABLE)

32 Advanced facilities

Note that in compiling a string the compiler does not allocate an extra variable to

hold the address of the first word of store containing the string.

A table is an initialised, permanently allocated vector. The value of a table is a

BCPL pointer to the first element of the vector. For example, in the hexadecimal

number output library routine (see chapter four), we find

WRCH((N&15)!TABLE

'0','1','2','3','4','5','6','7',

'8' ,'9',1 A' ,’B' ,'C','D' , ' E' ,'F')

which outputs the hexadecimal representation of the value stored in the bottom

four bits of N.

Manifest constants are particularly well suited to describing data-structure

layouts. Some consecutive words of store may represent a node in a data structure,

with various words within the node serving different purposes (e.g. a chain

pointer, a count, a value, an age). With suitable manifest constants we may write

constructions such as

CURRENTITEM!AGE CURRENTITEM!CHAINPOINTER

where CURRENTITEM points to the node. A popular fashion (noting that ! is

commutative) is to write these in reverse order, reading the character ! as ‘in’; e.g.

AGE!CURRENTITEM reads as ‘AGE in CURRENTITEM’

Remember that there is no runtime overhead incurred in using manifest

constants, and that the extra typing effort is repaid many times in saving

subsequent debugging and the efforts of others trying to understand your

program.

3.2.1 Example: the compiler tree-structure

An example of the use of pointers to manipulate data structures other than arrays

is the tree-structure representation of a program established by the BCPL

compiler (see chapter six for more details). Each node in the tree consists of several

consecutive words of store. The first word contains identifying information

(represented in the program as a manifest constant), and the remaining words

contain appropriate values or pointers to other nodes.

For example, the tree representing the namelist ABC, PQR, XYZ is shown in

figure 3.2

Advanced facilities 33

Fig. 3.2

The function to construct a namelist is

LET RNAMELISTf) = VALOF

$(LET A = RNAME() // returns a pointer to a S. NAME node

UNLESS SYMB = S.COMMA RESULTIS A

NEXTSYMB()

RESULTIS LIST3(S.COMMA, A, RNAMELIST())

LIST3 is defined as

LET LIST3(X, Y, Z) = VALOF

$(LET P = NEWVECf2) // a function which allocates a vector

P!0, P!1, P!2 := X, Y, Z

RESULTIS P

Details of how to allocate space (i.e. the implementation of NEWVEC) are discussed

in chapters four and six.

3.2.2 Example: matrix storage

As a sophisticated example, we can establish the structure of a two-dimensional

matrix within a vector. Assuming an MxN matrix, we can allocate the first M

locations of a sufficiently large vector to contain pointers to the M individual rows.

Each row has N elements, and successive rows are stored consecutively in the

vector following the table of pointers. We assume that M and N have been declared

as manifest constants. A vector of sufficient size is declared and initialised as

34 Advanced facilities

follows:

LET V = VEC M*(N+l)-l

FOR I = 0 TO M-l DO V!I := V + M + (N * I)

If M = 2 and N = 4, the matrix is represented diagrammatically as in figure 3.3.

pointer vector matrix elements

(not BCPL notation)

V [0, ,0]

V[0, .1]

V [0 , ,2]

Vf0, .3]

V[l, ,0]

V[1, .1]

V[1, ,2]

V[1, .3]

To access the I, Jth element, we first access the Ith element of the vector V; this

gives us a pointer to the Ith row. We then access the Jth element of this row, and so

this element can be accessed by the expression V! I! J.

This exercise demonstrates two points:

(i) Multilevel use of pointers is straightforward. You can construct arbitrarily

complicated data structures within a vector (and across several vectors if you

take care), but both the establishment and manipulation of these data

structures are your responsibility. With all but the simplest structures it is

good practice to write procedures and functions to perform commonly used

manipulations.

(ii) As a special case of (i), you can represent multi-dimensional matrices. If you

wish, you can store sparse or triangular matrices efficiently.

3.3 Handling conceptual data types

Whenever you invent a new conceptual type that cannot be represented by a single

BCPL value (e.g. a symbol table, or a bit string), then you should develop a set of

routines and functions which perform all required operations on it. The internal

Advanced facilities 35

representation of your new conceptual type, in terms of data structures, pointers,

bit-packing and the use of other conceptual types, need only be known within this

set of routines.

By way of example, you may well need to use a symbol table. You decide upon

the operations required (e.g. does symbol S exist within the symbol table, insert

symbol S with associated value T in the symbol table, remove symbol S, associate a

new value with S, produce a list of symbols with value T) and the internal workings

(use of vectors, pointers, hashcoding for table lookup etc.). The routines and

functions may, in turn, call on other routines and functions which deal with the

abstractions of ‘symbol’ and ‘list’. The net effect is that users of the symbol table are

neither interested in, nor care about, the internal workings of the symbol table, or

of symbols themselves. A program change could be made (e.g. a new hashing

function or table lookup technique employed) without any other routines being

affected.

Further reading on this topic may be found in Parnas’s paper on modular

decomposition [9] and in the descriptions of Simula [3] and CLU [7] which both

contain language constructions to support, in effect, data abstraction.

Exercise V

Design a multi-precision integer arithmetic package. Your package should

include the procedures PLUS, MINUS, TIMES, DIVIDE, PRINT and READ,

together with procedures to convert between single length and multiple length

integers. Consider carefully various possible representations (e.g. making maxi¬

mum use of all the bits in each word, as against storing values up to a convenient

power of ten in each word). Hence, by implementing sufficient of your package,

calculate and print the decimal value of 22048— 1.

3.4 Procedure parameters

The BCPL procedure call uses the call-by-value technique for parameter passing.

Thus, when you make a call such as F (X), it is the value of X that is passed into F

and not its address and so there is no direct way to alter X from inside F. On the

inside of the procedure, the values of the parameters at the moment of call are

assigned to the corresponding formal parameters as declared in the procedure

declaration. To all intents and purposes, the formal parameters of the procedure

are simply local variables.

We discuss now what happens to pointers. Assume that we have a procedure P

with one formal parameter A, i.e. P is declared by

LET P(A) BE . .

36 Advanced facilities

Consider the case where V is declared (outside P) by

LET V = VEC 30

The value passed to the procedure P by the call

P(V)

is the value held in the variable V which, assuming that no assignments have been

made to it, is a BCPL pointer to the zeroth' element of the vector. This value is

copied into the formal parameter A, and thus the elements of the vector may be

accessed from within P by writing

A!0, All, A! 2, etc.

If we wish to change the contents of a dynamic variable declared outside a

procedure, then we have to pass a pointer to it. This could be done either by

storing the pointer in a static variable (a back door method), by passing the value of

another variable which already holds its address (this is in effect what happens

with vectors), or by using the a construction to pass its address.

Thus to interchange the contents of two variables we could write a procedure

LET SWAP(PX,PY) BE

$(// PX and PY point to the two variables

// to be interchanged

LET TEMP = IPX // value of X

IPX := ! PY // Y copied into X

!PY := TEMP // and original X into Y

$)

and to call SWAP, we pass the addresses of the variables

SWAP (a) A, SB)

3.5 Recursion

All procedures in BCPL may be used recursively, i.e. every procedure may call itself

(either directly or by calling other procedures which in turn call the original

procedure). Every time a procedure is called, a new set of local variables (and

formal parameters) is established. Of course you are not obliged to design

Advanced facilities 37

recursive procedures, but sometimes a problem has a ‘back-to-front’ recursive

solution. An example is a procedure to print decimal numbers. Such a procedure

(let’s call it PRINT) might be called to print, 1643, say. The easiest method of

obtaining the digits is to split the number into two parts using the operators REM

and /; i.e.

1643 REM 10 = 3

1643 / 10 = 164

We thus obtain the digit 3, which can easily be converted into a character code and

printed. We then repeat the process on 164, and so on. Unfortunately, this

produces the digits in the wrong order.

However, this difficulty can be averted neatly by using recursion. As before, the

number is split into two parts, but this time the procedure is called recursively to

print 164 before printing the character 3. The procedure will be called two more

times recursively to print 16 and 1. On this final call, the number to be printed is

less than 10, and so can be printed as a single digit, thus further recursion is not

needed. The innermost call will print 1, and will then exit to the previous level of

recursion, which will print 6, and so on. Our PRINT procedure thus becomes

LET PRINT(N) BE

$(IF N > 9 DO PRINT(N/10) // print all digits

// except the last one

WRCH('0' + N REM 10) // print last digit

$)

Every time PRINT is called, a new copy is made of the value to be printed. On

inner (recursive) calls, this will be 1/10 of the immediate outer value. Thus if we

looked at all the program variables at the moment that WRCH was first called after

PRINT had been asked to print the number 547, we would find three variables

called N associated with the three recursive calls on PRINT. The innermost would

contain 5, the next would contain 54, and the original would contain 547. Further

reading on the topic of recursion may be found in Barron [2].

As a final point, tests on compiled BCPL programs have shown that dynamic

variable allocation (the mechanism implementing recursion) is usually more

efficient (with savings of up to 20% on program size, store usage and program

speed) than static allocation, particularly on hardware with small-size addressing

fields and few machine registers. This applies even if you do not take advantage of

recursion. For this you have to pay the price of the very local nature of local

variables. With good programming style this is no great hardship and, indeed, the

restriction prevents some of the side-effects which are often the source of

hard-to-find program bugs.

38 Advanced facilities

3.6 Scope rules', who knows about what

If you imagine a complete BCPL program module as being conceptually enclosed

in a $ ($) pair, i.e. as the inner part of a block, then the scope rules can be easily

explained.

Identifiers declared at the head of a block can be used in the same and

subsequent declarations and throughout the rest of the block, with the exception

that procedure parameters, simple variables and vectors cannot be used inside

embedded procedures. The following example illustrates this rule:

Scope (i.e. is accessible)

p(x) BE P X G Y Q R

GLOBAL $(G:100 $) + +

LET Y = X + + + +

LET QO BE + +

$(

H() + + + +

$)
AND H() BE + + + +

$(

QO + + + +

$)
+ + + + + +

$)

The controlled variable in a for-command (e.g. the variable I in FOE I = 1 TO 5

DO. . .) may only be referenced from within the controlled command.

3.7 Other controls

BCPL recognises that there are occasions in which the need arises for greater

flexibility in the construction of repetitive commands. Firstly, we consider

termination. The test for termination is carried out either at the head or at the tail

of the repetitive command. Sometimes it is easier to carry out a test for termina¬

tion from within the body of the repetitive command. Often the body contains a

branching construction (e.g. a switchon-command) in which some of the branches

should lead to termination. The break-command provides a simple construction

that meets this need.

For example, the debug package (see chapter five) contains a routine that reads

in a number in a given radix. In this we wish to read digits (including A, B, C, D, E

Advanced facilities 39

and F for hexadecimal numbers) until we meet a character not representing a digit

in the radix. The routine is as follows:

LET RDN(RADIX) = VALOF

$(1 LET A,SW = 0, FALSE

$(LET D = -1

IF '0'<=CH<='9' DO D : = CH-'0'

IF ' A'<=CH<='F' DO D := 10+CH-'A'

UNLESS 0<=D<RADIX BREAK

SW := TRUE

A := A*RADIX + D

CH := RDCH() $) REPEAT

UNLESS SW DO ERROR("BAD NUMBER")

RESULTIS A $)1

The first character is already in the global CH. The main part of the routine

iterates until a character not within the range of the radix is read. SW will be false if

no number is present, but is set TRUE if the loop repeats at least once.

The break-command says ‘jump out of the smallest enclosing repetitive com¬

mand’. It works inside the body of any of the repetitive commands FOR, WHILE,

UNTIL, REPEAT, REPEATWHILE, REPEATUNTIL. You should take care to

remember that only part of the repetitive command was executed when BREAK

was encountered.

There are other ways of exiting from the middle of a loop. For example, this

need is often coupled with the need to exit from an enclosing procedure. This can

be met by using RETURN or RESULTIS.

BCPL provides yet another control facility - the loop-command. This allows

you to skip the rest of the commands in the repetitive command, but remain inside

it. In the case of FOR, the controlled variable is incremented and, conditionally,

the repetitive command repeated. Within UNTIL, WHILE, REPEATUNTIL and

REPEATWHILE, the use of LOOP transfers control to the point at which the test is

made. For REPEAT, the repetitive command just starts again.

LOOP is used in situations where you discover early on in a repetitive command

that the rest of the command can be skipped and so the next thing to do is to test

whether to execute the command again or not.

3.8 Bit-operations

BCPL has several operators for logical bit-operations. For example

X := X &. #377

forms the bitwise logical ‘and’ of X and the octal constant 377, effectively retaining

40 Advanced facilities

only the last eight bits of X. The full set of operators is

<< left shift

» right shift

-i logical-not (bitwise inversion)

A logical-and

| logical-or

NEQV logical-not-equivalence (exclusive-or)

EQV equivalence

e.g. #42 | #20 evaluates to #62

#42<<3 evaluates to #240

#42»2 evaluates to #10

Care has to be taken with the BCPL precedence rules (see chapter eight). The

precedence order of the logical operators is

most binding «, » (but see chapter eight)

-1

A

I
least binding EQV, NEQV

Thus

A + B » C | DAE

is equivalent to

((A + B) » C) | (DAE)

If you are simply joining conditionals together by using the logical operators,

e.g. in

IF X>Y A A<=B THEN . . .

then brackets are not necessary. However, until you feel really confident about the

BCPL precedence rules it is safest to use brackets liberally. Indeed, it is a good

habit to use brackets, remembering that your program might be read (and

altered) by someone less familiar with BCPL. Note the following typical case

where the use of brackets is necessary:

IF (A A #377) = 'P' DO

Advanced facilities 41

Without brackets, the compiler would read this as

IF A & (#377 = ’P') DO ...

As in this example, the operators |, ->, EQV and NEQV are often used in

BCPL to manipulate truth values. If the expression so formed is producing a truth

value within the testing part of an IF, UNLESS, WHILE, etc., then evaluation is

strictly left-to-right and evaluation ceases once the truth value is determined. For

example, if B(X) is a function which produces a Boolean result, then it will never

be called in the following test:

IF 1<2 | B(X) DO . . .

Exercise VI

Write a BCPL function with one parameter which returns as result the number

of bits set to 1 in the parameter.

3.9 Goto-commands and labels

BCPL does have goto-commands and labels. However, most of the time goto-

commands are not needed. Your program can almost always be more clearly

expressed by the other repetitive commands (FOE, WHILE etc.), by using IF and

TEST constructs with compound commands and by using the ENDCASE, BREAK

and LOOP control-transfer primitives.

A label declaration is written as an identifier followed by :. For most purposes it

can be treated naively as in other programming languages, to identify a point in

the program text. Strictly speaking, BCPL uses an indirect interpretation. The

label identifier is associated with a static location (i.e. it can be treated as a static

variable), which the compiler initialised to contain a BCPL value representing a

point in the (compiled) program text. This value can thus be assigned to other

variables, passed as a parameter (or indeed mutilated) like any other BCPL value.

The construction

GOTO expression

means ‘evaluate the expression, and transfer control to the point in the program

represented by its value’. Usually, the expression takes the form of a variable

declared by a label declaration. Note that the static variable itself can be assigned

to, which, with careful use, provides a dynamic jump facility (which should be

annotated very carefully), or, with careless use, provides ready chaos.

42
Advanced facilities

3.10 Typeless names - or context type determination

You can use BCPL in the manner described in the previous chapter, using

different variables for the different objects of your program without thinking too

much what the compiler makes of it all. However, there are some consequences of

the BCPL approach, described in chapter one, which you can use (or abuse) once

you become more fluent in the language. If you find that you cannot accept the

BCPL philosophy about type, then you should probably use a systems-program-

ming language with compile-time type checking, such as C or Pascal.

When you declare an identifier in BCPL, you are stating its name, how it is to be

stored, and possibly indicating an initial value. You do not say how you intend to

use it. The compiler may restrict your use of an identifier by various scope rules,

but that is a consequence of the implementation storage strategy.

The value of an identifier is always representable as a pattern of bits (how many

bits depends upon the implementation). The interpretation to be placed on the

bit-pattern in no way depends upon how the identifier was declared, but only on

how it is used in your program, i.e. what operators, functions etc. you apply to it.

The corollary to this is that you can apply any operator (other than a) to

absolutely any named object in your BCPL program. This gives you at one and the

same time great freedom and great responsibility.

3.11 Procedures as values

®CPL has been carefully designed so that it is possible to represent a procedure by

a simple BCPL value, which we will call the procedure value. In many implemen¬

tations this is the procedure’s entry address. The translated procedure is stored in

a sequence of locations, which start at a known address. The procedure value is

placed in a variable bearing the name of the procedure. In other words, the

variable can be thought of as containing the start address of the procedure. If the

name of the procedure coincides with that of a global variable then this variable is

used to store the procedure value, otherwise a new static variable (see section 3.12

for details of static variables) is used. For example,

GLOBAL $(STAET:1 $)

LET START() BE

$(... $)

causes global variable number I to be initialised to the procedure value of START.

This is the only way of initialising global variables prior to executing the

program.

Advanced facilities 43

Procedure values can be assigned to ordinary variables, as in the following

extract from the library routine WRITEF (described in chapter four):

$(3 LET F, ARG, N = 0, T!0, 0

P := P + 1

$(LET CH = GETBYTE(FORMAT, P)

SWITCHON CH INTO

$(. . .
CASE 'S': F := WRITES; GOTO L

CASE 'C': F := WRCH; GOTO L

$)

L: F(ARG, N); . . .

The variable F is set to contain the procedure value for one of several output

procedures, depending upon the control character in CH. The appropriate

procedure is subsequently called to generate the desired output.

A further consequence is that a procedure may be passed as a parameter to

another procedure, or returned as the result of a function call.

The general format of a procedure call is

expression(parameters)

Usually we use the declared procedure name as the expression, but there is

nothing to prevent us from writing an arbitrarily complicated expression. The

expression must be enclosed in brackets in all but the simple cases, as a procedure

call takes precedence over all other operators.

3.11.1 Example: OS6 stream structure

As an example, we describe the use of procedure values in the stream structure of

OS6, which is an operating system written in BCPL by Stoy and Strachey [12]. In

OS6, the programmer can manipulate streams of input and output. The function

call NEXT(S) can be applied to any input stream S, and produces the next

character. Similarly OUT(T,X) outputs the character X to the output stream T.

Some streams are bi-directional.

All the relevant information concerning a particular stream S is stored in a

vector (to which S points). The first few items in this vector are procedure values.

The vector takes the form shown in figure 3.4,

44 Advanced facilities

where NEXT. SOURCE is the function which implements NEXT for S (it may well be

a different function for different streams) etc. Stream-creating functions them¬

selves take the form

LET INPUTFROMTTY = FALOF

$(LET V = NEWVEC(5) // claiming a vector from a

// freestore package

V!0 := NEXTTTY // the procedure value for NEXTTTY

V!1 := STREAMERROR // for an input stream

RESULTIS ¥

$)

Thus the procedure value held in the zeroth element of S represents the

function which implements NEXT for stream S . NEXT is thus defined as

LET NEXT(S) = (S!0)(S)

Similarly, OUT is defined as

LET OUT(S, X) BE (S!1)(S, X)

OS6 allows streams with special properties (e.g. removing surplus layout

characters, or using translation tables) to be established using the system-provided

streams. The reader is referred to Stoy and Strachey [13,14] for further details of

this interesting operating system.

3.12 Static variables

The global vector is an example of permanently allocated storage in BCPL, as

opposed to the temporarily allocated storage of local variables. It is primarily

Advanced facilities 45

designed for linking independently compiled modules, but when permanently

allocated storage is required within a single module then the static declaration is to

be preferred. This introduces the names and initial values of the static variables.

Static variables are initialised before the program starts execution. An example of

the use of a static variable is

LET NEXTIDO = YALOF

// generates a sequence of integer identifiers

$(STATIC $(NUMBER = 0 $)

NUMBER := NUMBER + 1

RESULTIS NUMBER //delivers 1 on first entry

// 2 on second entry, etc.

$)

3.13 Separate compilation facilities

You should familiarise yourself with the facilities in BCPL for separate compila¬

tion of physical source modules (some installations refer to these as segments). If

any source BCPL program or module occupies more than four or five pages of

lineprinter listing, then it should be considered for splitting into separate pieces.

An even better approach is to anticipate this; it is easy to forget how rapidly a

program can grow. When you first design a program, design in separate

compilation from the beginning (which is also a good programming discipline)

even if the modules are only half a page long. Put the global and manifest

declarations required throughout the program into a separate file and use GET at

the head of each module. Declarations global to several routines but local to a

module, however, should not be allowed to find their way into this file.

The global vector forms the basis of the independent compilation facilities of

BCPL. In contrast to local variables, if you declare a procedure with the same

name as a global variable, then this global variable becomes associated with the

procedure by the compiler setting it to contain the procedure value (typically the

address of the procedure in the computer’s program memory). The global

variable should therefore not be used for anything else. So if we declare a

procedure called COUNTER somewhere in the program after declaring a global

variable COUNTER, then this procedure is available to all parts of the program. We

can, in fact, divide our program into two pieces (which we will call modules) which

can be compiled separately. Both modules start with the same global declarations,

and thus can access the same global variables. However, only one module contains

46 Advanced facilities

the procedure to be associated with COUNTER; i.e. Module A (compiled on

Tuesday):

GET "LIBHDR"

GLOBAL $(NUMBER:

LET START() BE

$(. . .
NUMBER := 543

COUNTER()

$)

Module B (compiled on Wednesday):

GLOBAL $(NUMBER:100; COUNTER:101 $)

LET COUNTER() BE

$(. . .
FOR I = 1 TO NUMBER DO // using the global variable

$)

100; COUNTER:101 $)

// call the global procedure

We could then load the two modules side-by-side and run the complete

program on Thursday.

Exercises VII

1. Write a program to generate a random binary tree of 100 nodes, each

containing a random integer in the range 0 to 5.

2. Write a program to make a copy of the tree produced by 1 above in such a

way that identical branches of the tree share the same memory. Print the number

of distinct nod,es used in this copy.

3. Write a program to count the number of ways in which eight queens can be

laid out on a chess board in such a way that no queen is on the same row, column

or diagonal as any other.

4

The library, language extensions, and machine

independence

Most BCPL implementations comprise a set of basic procedures (some written in

the local assembly language), together with a standard library of procedures

written in BCPL. The basic procedures provide the means of accessing the

operating-system functions and machine-level facilities without the programmer

having to depart from BCPL.

4.1 Basic input and output procedures

Available to the program are a set of input and a set of output streams. The

routine SELECTINPUT is used to select an input stream, from which all

subsequent input will be taken until the next call of SELECTINPUT. Similarly

SELECTOUTPUT is used to select an output stream, to which all subsequent output

will be sent until the next call of SELECTOUTPUT. The argument of SELECTINPUT

or SELECTOUTPUT is a BCPL value which represents a stream in some implemen¬

tation-dependent way. On some implementations, integers are used; however, it is

more usual for a stream to be represented by a pointer to a data control block

containing all the information relevant to the stream.

In many implementations, the association between these values and the physical

input/output devices, files etc. can be controlled dynamically. To gain access to

these facilities, procedures with names such as FINDINPUT, FINDOUTPUT and

FINDFILE are provided as appropriate. On initial entry to a BCPL program, a

default selection of an input and an output stream will usually have been made by

the system, and so it is often not necessary to invoke any of these procedures in

simple programs.

Single-character input and output is provided by RDCH, the function which

reads a character, and WRCH, the routine to output a character. If RDCH is called

when the currently selected input is exhausted, it yields the conventional value

ENDSTREAMCH. This is a manifest constant whose value is usually — 1, to differen¬

tiate it from any valid character. Streams can be closed by using the routines

ENDREAD and ENDWRITE whose exact effects are implementation dependent.

47

48 The library and language extensions

4.2 Input and output library facilities

The basic procedures just described provide a level of machine independence on

which a standardised BCPL library is constructed. The most satisfactory way of

specifying the library is by describing its implementation in terms of these basic

procedures. This also demonstrates the typical ways in which they are used.

4.2.1 Numbers

LET WRITED(N,D) BE

$(1 LET T = VEC 20

AND I, K = 0, -N

IF N<0 DO D, K := D-l, N

Til. K, I := -(K REM 10), K/10, 1+1 REPEATUNTIL K=0

FOR J = 1+1 TO D DO WRCH('*S')

IF N<0 DO WRCH()

FOR J = 1-1 TO 0 BY -1 DO WRCH(T!J+'0') $)1

This routine outputs N as a signed decimal integer, occupying at least D printing

positions. The digits are stored in reverse order in the vector T, and the routine

works with negative values to overcome the problem of negating the largest

negative number in 2’s complement representation. Note that this routine relies

upon the correct operation of REM with a negative left operand (strictly speaking

not defined in BCPL), and that consecutive numerical representation of digits in

the character code is assumed.

The routine to output a number in the minimum number of printing positions

is simply

LET WRITEN(N) BE WRITED(N, 0)

The following function reads in a decimal number (possibly preceded by + or

-), ignoring leading spaces, tabs and newlines:

LET READN() = VALOF

$(1 LET SUM = 0

AND NEG = FALSE

AND CH = 0

CH := RDCH() REPEATWHILE CH='*S' |

CH='*T' |

CH='*N'

The library and language extensions 49

SWITCHON CH INTO

$(CASE : NEG := THUE

CASE '+': CH := RDCH() $)

WHILE '0'<=CH<='9' DO

$(SUM := 10*SUM + CH - '0'

CH := RDCH() $)

IF NEG THEN SUM := -SUM

TERMINATOR := CH

RESULTIS SUM $)1

Notice that, on some implementations using 2’s complement representation of

integers, this function will fail to yield the correct value for the largest negative

integer.

The next routine provides octal output:

LET WRITEOCT(N, D) BE

$(IF D>1 DO WRITE0CT(N»3, D-l)

WRCH((N&7) + '0') $)

If this routine is called, for example, by WRITE0CT(#173, 3) then it calls

itself recursively with WRITEOCT(# 17,2) and recurses again with

WRITE0CT(#1,1). In this deepest level of recursion, the parameter D is set to 1,

and so the routine WRCH is called (for the first time) to output the character

corresponding to the bottom three bits of N (' 1'). On exit to the middle level of

recursion, N will contain 17, and so WRCH is called to output the character ' 7' .

Finally WRCH is called from the outermost level to output the character ' 3' . Thus

the net effect of the original call is to write out the characters ' 1', 1 7 ' and ' 3' in

that order.

A similar routine provides hexadecimal output:

LET WRITEHEX(N, D) BE

$(IF D>1 DO WRITEHEX(N»4, D-l)

WRCH((N&15)!TABLE '0','1','2','3','4','5','6','7',

4.2.2 Strings

Exactly how BCPL strings are stored depends, amongst other things, upon the

implementation word size. This dependency is concealed within the string-access

procedures GETBYTE and PUTBYTE. The call

GETBYTE(S, I)

50 The library and language extensions

obtains the Ith byte of the string S. By convention, byte 0 contains the number of

characters in the string, which are stored consecutively from byte 1. The call

PUTBYTE(S, I, C)

sets the Ith byte of the string S to contain the character C.

String output is implemented by WRITES defined as follows:

LET WRITES(S) BE

FOR I = 1 TO GETBYTE(S,0) DO WRCH(GETBYTE(S,I))

GETBYTE(S,0) gives the number of characters in the string, which are then

accessed by GETBYTE(S,I). Note that, while the number of bytes per word is

implementation dependent, this is of no interest to the user of GETBYTE.

The following routine unpacks a string into a vector:

LET UNPACKSTRING(S, V) BE

FOR I = 0 TO GETBYTE(S, 0) DO VII := GETBYTE(S, I)

Note that a vector of sufficient size has to be established before this routine

is called. The function PACKSTRING performs the inverse operation using

PUTBYTE:

LET PACKSTRING(V, S) = VALOF

$(LET N = V10 & #XFF

LET SIZE = N/BYTESPERWORD

S!SIZE : = 0

FOR I = 0 TO N DO PUTBYTE(S, I, V!I)

RESULTIS SIZE

$)

Note that the result of PACKSTRING is the subscript of the highest element of S

used.

4.2.3 Formatted output

The routine WRITEF provides approximately the facilities of the Fortran WRITE

statement. BCPL allows procedures to take a variable number of parameters, with

no predisposition as to type, and so WRITEF is implemented as a library routine,

and not as a statement of the language.

Its first parameter is a string, which contains substitution specifications each

introduced by % followed by details of the printing style. Successive parameters of

The library and language extensions 51

the call provide successive values to be substituted. The number of parameters

required depends upon the format string. A typical call of WRITEF is

WRITEF("Break No %N at %X4*N", BREAKNO, A)

The ?SN instructs WRITEF to substitute the value of BREAKNO, printed

as a decimal integer, and %XA the value of A, printed as a four-digit

hexadecimal number. This call would produce, typically,

Break No 5 at 03F8

We now give the text of WRITEF:

LET WRITEF(FORMAT, A, B, C, D, E, F, G, H, I, J, K) BE

$(1 LET T = aA

FOR P = 1 TO GETBYTE(FORMAT, 0) DO

$(2 LET K = GETBYTE(FORMAT, P)

TEST K = ’%'

THEN $(3 LET F, ARG, N = 0, !T, 0

P := P + 1

$(LET CH = GETBYTE(FORMAT, P)

SWITCHON CH INTO

$(DEFAULT: WRCH(CH): ENDCASE

CASE ' S' : F = WRITES; GOTO L

CASE ' C' : F = WRCH; GOTO L

CASE '0' : F = WRITEOCT; GOTO M

CASE 'X' : F = WRITEHEX; GOTO M

CASE ' I' : F = WRITED; GOTO M

CASE 1 N' : F = WRITED; GOTO L

M: P := P + 1

CH:= GETBYTE(FORMAT), P)

N := 1 0 '<=CH<= ' 9 ' -> CH-' 0 ',

10+CH-'A'

L: F(ARG, N)T := T + 1 $)3

ELSE WRCH(K) $)2 $)1

T holds the pointer to the store location containing the next parameter to be

substituted in the format, thus ! T produces the corresponding value. Increment¬

ing T advances it to point to the adjacent parameter. The variable F is used to hold

52 The library and language extensions

the procedure value of the routine to be called to print the value in the specified

format. Note that using a procedure name without brackets produces the cor¬

responding procedure value, and does not invoke it.

BCPL does not require the number of actual parameters in a procedure call to

equal the number of formal parameters in its definition. Parameters in excess of

the number specified in the definition are lost. Hence this definition of WRITEF is

only valid for calls having up to twelve parameters. Notice also that the call

F(ARG, N) is valid when F is a monadic routine (such as WRITES) as the value of N

is superfluous in this case.

4.3 Miscellaneous

Often included among the set of basic procedures is the function MULDIV (X, Y,

Z). This evaluates (X * Y) / Z without overflow, providing that the correct result

can be stored within the single word length of the implementation. It does this by

dividing Z into the double-length product of X and Y. This function is especially

useful in short word length implementations.

The following completes the main part of the BCPL library:

LET RANDOM(N) = 2147001325*N + 715136305

This is a congruendal pseudo-random number generator. It has the property

that the bottom n digits go through all 2" possibilities in 2" iterations. Note that, in

particular, the result is alternately even and odd. The definition given above is for

32-bit implementations, and the calculation is assumed to be performed modulo

232. The right-hand bits of the two constants should be used as appropriate for

shorter word length implementations. A typical use of RANDOM is

LET RANDNO() = VALOF

$(STATIC $(SEED =0 $)

SEED := RANDOM(SEED)

RESULTIS (SEED»7) & #77 $)

Notice that this function will produce exactly the same sequence on a 16-bit

machine as on a 32-bit machine if the constants are truncated to 16 bits.

4.4 LEVEL and LONGJUMP

These two routines provide between them the means of transferring control

across several layers of procedure invocation. We recall that the parameters, the

dynamic variables and vectors of BCPL procedures are stored using a stack

The library and language extensions 53

mechanism. Each procedure call results in a new stack frame being allocated to

hold the dynamic variables etc. of this invocation of the called procedure. A

procedure may obtain a BCPL value representing its stack frame by calling

LEVEL(). This value may then be stored, say, in a global variable for later

reference to the stack frame.

We recall also that a label in BCPL is, in effect, a static or global variable which is

initialised to a value representing the point in the program at which it is declared.

Assume that we have written a procedure P, in which we declare a label L. Within P

it is sensible to use the command GOTO L to transfer control to L. However, once

control has passed to another procedure (Q say) the current stack frame will be

that of an invocation of Q. Thus use of GOTO L within Q will result in a transfer of

control into the program of P, but using Q’s stack frame, leading to undefined and

probably catastrophic effects. By contrast, on the normal completion of the body

of Q, execution will resume at the point in P just after the call of Q with P’s stack

frame restored appropriately. In some (rare) circumstances (e.g. error handling),

this is inconvenient, particularly if Q is reached only via several other procedures

or if the point in P to which we wish to return is not where we left it. The solution is

to memorise the stack frame of P (say, in the global P. STACKFRAME) and to

instruct explicitly the BCPL runtime system to reinstate it on jumping to L. The

routine LONGJUMP is provided for this purpose, and may be called thus:

LONGJUMP(P.STACKFRAME, L)

To illustrate a typical use of this facility, we refer to the debug package,

described in chapter five. This contains, at the outermost level, the declaration of

two static variables REC.P and REC.L. The main steering routine (DEBUG) is

structured as follows:

LET DEBUG() = VALOF

$(1 ... // declarations

REC.P, REC.L := LEVEL(), NXT

NXT: CH := RDCH()

SW: SWITCHON CH INTO

$(DEFAULT: ERROR("BAD COMMAND %C”, CH)

$)

$)1

Then come other procedures, which are called from DEBUG under appropriate

circumstances, which also contain calls of the error routine, for example:

54 The library and language extensions

ERROR(" BAD NUMBER"). Finally, the error routine is defined as:

AND ERROR(S, A) BE

$(1 NEWLINE()

WRITEF(S, A)

NEWLINE()

UNTIL CH=' *N' DO CH := RDCH()

LONGJUMP(REC.P, REC.L) $)1

Thus, on encountering an error, whether simply an unknown command

detected in DEBUG, or a more subtle error detected in an inner procedure, an

appropriate error message is output, the remainder of the current line is ignored,

and control is transferred back into DEBUG to read the next command. A similar,

but more sophisticated, example of the use of LEVEL and LONG JUMP will be found

in the BCPL syntax analyser (chapter six).

4.5 APTOVEC

The BCPL method of declaring vectors is by using the let-declaration, e.g.

LET V = VEC 25

The size of the vector (in this example 26 words are allocated contiguously) must

be specified at compile-time. This allows the compiler to calculate the exact size of

the stack frame required for the enclosing procedure. Programmers are thereby

constrained to ensure that the vectors will always be big enough to cover all

requirements, even though this may mean wasting space in a majority of circum¬

stances. To alleviate this difficulty when it is perceived as being serious, many

implementations provide a facility which creates a vector whose size may be

determined dynamically. This facility is provided by the function APTOVEC,

whose definition is as follows:

LET APTOVEC(F, N) = VALOF

$(LET V = VEC N // illegal in BCPL

RESULTIS F(V, N) $)

APTOVEC is normally implemented in assembly language, since dynamic vector

allocation is not permitted in BCPL. It will typically allocate space for the vector V

on the stack just below the stack frame for the call of F. Thus on exit from F, via

APTOVEC, to the calling procedure, the vector will be deallocated automatically. It

The library and language extensions 55

can be used as follows:

LET START() BE

$(LET N = READNO

APTOVEC(MAINPROG, N) $)

AMD MAINPROG(V, N) BE . . .

4.6 Freestore management

Whilst the ability to choose dynamically the vector size alleviates some space-

management problems, there are circumstances where the allocation of space

bears no relationship with the flow of control through the procedure structure of a

program. Under these circumstances the programmer has to be responsible for

both the allocation and the deallocation of space. The following procedures can be

used to provide such a facility in the form of a simple freestore-management

system. This system uses a first-fit algorithm for allocating blocks of variable size.

It coalesces adjacent free blocks and, although it is not particularly efficient, the

procedures are compact.

In an outer block, the programmer declares a vector of suitable size and calls

INITBLKLIST, e.g.

LET START() BE

$(LET FREESTOREVEC = VEC FSVSIZE

IMITBLKLIST(FREESTOREVEC, FSVSIZE)

This hands over the vector to the freestore-management system. In this system,

FSVSIZE must be even. An allocation of space from this area may be made by

calling the function GETBLK, e.g.

V := GETBLK(X+Y)

which returns a pointer to the allocated space. In this particular package, the first

word of each block supplied is reserved for the package’s use, but the remainder

may be treated as an ordinary vector. When the space is no longer required, it is

returned with the call

FREEBLK(V)

56 The library and language extensions

The package is defined for a 16-bit machine as follows:

GET "LIBHDR"

GLOBAL $(

BLKLIST:100; GETBLK:101; FREEBLK:102; INITBLKLIST:103

$)

MANIFEST $(

SIZEBITS=#XFFFE; FREEBIT=1

$)

LET INITBLKLIST(V,N) BE

BLKLIST, V! 0, V'.N := V, N+FREEBIT, 0

LET GETBLK(N) = VALOF // N is the size of the required block

$(1 LET P, Q = 0, BLKLIST

N :='(N+1) &. SIZEBITS // round up to next multiple of 2

$(P := Q

WHILE (!P&FREEBIT)=0 DO // chain through used blocks

TEST !P = 0 THEN RESULTIS 0 // end of store reached

ELSE P := P + ! P

Q := P // chain to end of this free area

UNTIL (!Q&FREEBIT)=0 DO Q := Q + !Q - FREEBIT

$) REPEATUNTIL Q —P>=N // until large enough block found

UNLESS P+N=Q DO // split block unless exact fit

PIN := Q-P-N+FREEBIT

!P := N

RESULTIS P

$)1

LET FREEBLK(P) BE !P := !P | FREEBIT

Before allocating a block, the package makes sure that its size is a multiple of 2

(by rounding up). The first word is set to contain the size of the block. Thus all

allocated blocks have the least significant bit set to zero. This bit is set to 1

(FREEBIT) when the space is returned. To find a free block of sufficient size, the

package skips over the allocated blocks until a free block is found. The following

The library and language extensions 57

free blocks are coalesced and the amalgamated block tested to see if it is of

sufficient size. If not the process is repeated. If so then it is subdivided (if

necessary) into the allocated block and a free block. If no large enough block is

found GETBLK returns zero.

4.7 The floating-point extension

Some implementations contain extensions to support floating-point arithmetic. A

floating-point constant may have one of the following forms:

i. jEk

i.j

iEk

where i and j are unsigned integers and A is a (possibly signed) integer. The value

is represented on the IBM 370 as a 32-bit floating-point number.

The arithemtic and relational operators for floating-point quantities are as

follows:

#* #/

#+ #-

#= #-i=

They have the same precedence as the corresponding integer operations.

There are, also, two monadic functions FIX(X) and FLOAT(X) for conversions

between integers and floating-point numbers. A common pitfall is to write -3.1

when #-3.1 is intended.

4.8 The field-selector extension

Some implementations support the field-selector extension. Field selectors allow

quantities smaller than a whole word to be accessed with reasonable convenience

and efficiency. A selector is applied to a pointer using the operator OF (or : :). It

has three components: the size, the shift and the offset. The size is the number of

bits in the field, the shift is the number of bits between the right-most bit of the

field and the right-hand end of the word containing it, and the offset is the position

of the word containing the field relative to the pointer. By convention, a size of

zero specifies that the field extends to the left-hand end of the word.

The precedence of OF is the same as that of the subscription operator (!), but its

left operand (the selector) must be a constant-expression. A convenient way to

58 The library and language extensions

specify a selector is to use the operator SLOT whose syntax is as follows:

cconstant expression> ::= SLOT <size>: <shift>: <offset> |

SLOT <size>: <shift> |

SLCT <size>

where <size>, <shift> and <offset> are constant-expressions. Unless explicitly

specified, the shift and offset are assumed zero by default. Selectors are best

defined using manifest declarations.

A selector may be used on the left-hand side of an assignment and in any other

context where an expression may be used, except as the operand of S. In the

assignment

F OF P := E

the appropriate number of bits from the right-hand end of E are assigned to the

specified field. When

F OF P

is evaluated in any other context, the specified field is extracted and shifted so as to

appear at the right-hand end of the result.

On some implementations, fields corresponding to half-words, bytes and

individual bits are treated efficiently.

4.9 The infixed byte operator

The byte handling library procedures GETBYTE and PUTBYTE have been found to

be so useful that many rJCPL implementations have an infixed operator that

provides the same facility. The preferred extension uses the operator % giving it

identical precedence to the indirection operator! . Its use on the left-hand side of

an assignment invokes PUTBYTE. For example,

S%I := CH

is equivalent to

PUTBYTE(S, I, CH)

In other contexts, S^I is equivalent to GETBYTE(S, I).

The library and language extensions 59

4.10 Techniques for machine independence and portability

Machine independence is easy to achieve in BCPL for the main body of an

algorithm or program provided that you adopt a simple and clear programming

style. However, designing for portability does require some care:

(a) Put all machine-dependent material in one module. This includes all calls

on standard library procedures, initialisation code where this depends

upon an external interface (e.g. how options are specified on entry to the

program), any procedures that will need adapting to use a different word

size (alternative versions, or readily changed manifest constants should be

provided). Keep the external (system-dependent) interface as simple and as

flexible as possible. Note that many computer systems do not permit

character-by-character interaction on on-line terminals.

(b) Carefully avoid code which makes use of representation, particularly of

numbers and of strings. For example, right shift may divide by two on your

installation, but may not on another.

(c) Differing word sizes can cause problems. Carefully document all places in

your program where arithmetic range limitations may apply (e.g. it may be

in your program that the maximum value of a parameter is the square root

of the maximum number that can be held in a machine word). Remember

that more vector space will be needed to pack a character string on a

small word size machine than on a large one. The manifest constant

BYTESPERWORD should be used in the appropriate vector declarations. A

string of ff characters packs into 1 + N/BYTESPERWORD cells.

(.d) Beware of problems due to differing character sets. Write programs that

still work even when all lower-case characters are converted to upper-case.

Make no assumptions about the number of bits in a character. This is

usually 8, and consequently the longest string is defined to be 255 charac¬

ters. Nevertheless, keep strings short. Always use character quotes and

escapes; never write the installation-dependent value of a character.

5

Debugging and error handling

Ensuring that a program performs as intended is a problem in any programming

system. Inevitably, the newcomer to BCPL will also be caught unawares by

differences of BCPL from his accustomed programming language. In this chap¬

ter, we first examine some of the compiler-detected errors, and then discuss the

techniques available to aid fault detection in programs that compile but do not

work correctly. We conclude with a list of common mistakes as an aid to

trouble-shooting.

5.1 Syntax errors

Many syntax errors can be easily located with the help of the compiler’s error

messages. However, it sometimes happens that slips in BCPL programs cannot be

determined as being erroneous until compilation has proceeded for some dis¬

tance. As part of the syntax error reporting, the last-read sixty-four characters of

the program are printed, nevertheless error messages produced at the moment

when the error is detected are somewhat imprecise, as the fault could well have

occurred well prior to the current symbol. We discuss some of the syntactic slips

which are particularly prone to causing this effect.

5.1.1 Missing colon in : =

The compiler reads, for example, A = B (instead of A := B) as the start of an

expression. Several commands start with expressions and the error is often not

detected until one or two lines further on, for example if B is a large valof-

expression. The latest line read, though doubtless syntactically perfect, will be

displayed as (probably) containing the error. Thus it is always advisable to look

back in your program for a malformed command.

5.1.2 Extra semicolons

A semicolon may be used to separate one command from the next. This is in

contrast to some other languages where it is used as a terminator. Two consecutive

fin

Debugging and error handling 61

semicolons is erroneous, and a common error is to put one before the closing $) of

a compound command or block. These two errors cause the message ‘ERBOB IN

COMMAND’ to be printed. In fact you hardly ever need to use semicolons. In

particular, a semicolon may always be omitted if it is the last symbol of a line, and it

may be omitted in most other contexts.

5.1.3 THEN or DO needed

DO is a synonym of THEN, and, like the semicolon, may be omitted except where

needed to remove local ambiguity. An example of the type of construction where

it is necessary is

IP B THEN !P := 0

It is wise to omit THEN only if it occurs immediately before a command keyword.

5.1.4 Mismatched section brackets

This can cause problems in all stages of compiling and running a program. The

solution is to lay out your program neatly to reflect the nesting structure. Beware

of the problems that the occasional use of section bracket tags can bring. The

closing tagged bracket inserts extra closing brackets to close off any inner blocks or

compound commands - thus preventing the compiler from detecting a previously

omitted $). When a program with this error is run, the user is often baffled

because a large portion of his program is not obeyed. As an exercise, consider the

effect of omitting the $) on line 480 of the syntax analyser (described on page 102

in chapter six). You should either use tagged section brackets very liberally (no

‘untagged’ compound command or block more than, say, three lines long) or not

use them at all.

5.1.5 Inadvertent tagging

A frequent fault amongst newcomers to BCPL is to omit the necessary space

between an opening section bracket and the first declaration or command, e.g.

writing $ (LET A = 0

instead of $ (LET A = 0

which misleadingly produces the message ‘ERROR IN COMMAND’. A good habit is to

put each section bracket on a line by itself; this also serves to emphasise the block

nesting structure of the program.

62 Debugging and error handling

5.1.6 String problems

In older versions of the BCPL compiler, the misuse of string quotes would cause it

to generate wild diagnostics, as most of the program would be swallowed up as

belonging to some string, whilst the strings themselves would not form good

BCPL syntax. Remember that to include an asterisk in a string requires you to type

* *, and a double quotes character requires * ". In recent versions, the effect is less

dramatic, as unescaped newline is no longer permitted in strings.

5.2 Semantic errors

The semantic errors are detected in a compiler pass after the syntax analysis has

been completed, and the original source text is no longer available for pinpointing

errors. However, in practice, programs tend to have few compiler detected

semantic errors, and those that do occur tend to be concerned with the misuse of

variables. The name of the offending variable is usually sufficient information for

the programmer. However, there is one error in this class which tends to trip up

the programmer used to other block-structured languages:

DYNAMIC FREE VARIABLE USED

Every BCPL programmer meets this at least once (usually several times) during

his apprenticeship. Dynamic variables (e.g. simple variables and vectors declared

using LET) can be used in inner blocks, but they cannot be used in procedures

embedded in the block.

The reason for this follows from an aim of BCPL to eliminate hidden over¬

heads. Dynamic variables are stored using a stack mechanism. Each activation of a

procedure is allocated a stack frame, and a runtime pointer is maintained to the

current stack frame. By imposing this restriction, the compiler is able to reference

all dynamic variables as offsets from this pointer (which will usually be stored in a

suitable machine index register), thus employing simple and efficient code.

Furthermore, recursion is implemented without any additional complication.

This restriction only applies to dynamic variables, so you can use functions and

procedures (which also are declared using LET), globals, labels and static variables

that are declared outside the current procedure. If you still have problems, then

re-read sections 2.12 and 2.14. Most systems programmers admit that this is a

reasonable restriction once they understand the implementation issues involved.

5.3 Runtime error handling

The BCPL philosophy of giving runtime freedom to the programmer allows him

to write efficient and compact programs. However, the careless programmer who

Debugging and error handling 63

is accustomed to relying on the implementation to check the meaningfulness of his

program will meet many difficulties with BCPL. This can be regarded as a hidden

blessing, as it imposes the need for a careful stylistic approach to the design of

BCPL programs. We discuss first the considerations that should be given to error

handling, and in the later sections of this chapter we describe how the same

runtime freedom can be exploited to provide powerful yet compact program

debugging tools.

Error handling should be considered at an early stage in the design of a

program. The phrase may be taken to include both detection and recovery. There

is no built-in checking of array bounds etc. in BCPL, so explicit error checking

should be considered. The procedures that maintain data structures should

incorporate a certain degree of error checking (e.g. values, address offsets within

range etc.). To effect error recovery, they should maintain consistency when an

error is detected (e.g. by substituting null or harmless values, and by ensuring that

data structures are not left only half filled etc.). Well-defined error indications

should be designed into the procedure interfaces, so that an inner procedure

which is unable to conceal an error can pass up responsibility for containment to

the calling procedure.

By designing in a substantial degree of error checking, you will have made

considerable progress towards providing yourself (and anyone else who may use

or modify your program) with a purpose-built debugging tool. A faulty value,

generated by an erroneous procedure, could well be trapped soon afterwards by

the incorporated redundancy before too much damage occurs obscuring the

original fault.

5.4 BACKTRACE, MAPSTORE, and ABORT

Many BCPL implementations provide a number of post-mortem facilities.

BACKTRACE is a procedure that inspects the BCPL stack, printing out part of the

contents of each stack frame. Setting suitable compiler options allows BACKTRACE

to display the print name of each active procedure. The output thus records the

most recent procedure call at each nested level, together with its arguments and

first few dynamic variables.

MAPSTORE prints out the contents of the global vector, followed by a map of the

program area consisting of the names and addresses in store of separately

compiled modules, the start of procedures, and execution counts. The level of

detail produced by MAPSTORE is controlled through compiler options. Very

detailed information is produced by MAPSTORE when used in conjunction with

the profile option (see below).

The BACKTRACE and MAPSTORE procedures provide examples of how the

addressing flexibility of BCPL can be harnessed to good effect. They are both

extremely machine dependent, since BACKTRACE makes use of detailed know-

64 Debugging and error handling

ledge of the runtime stack, whilst MAPSTORE searches the compiled program for

specific machine instructions. Despite this, the overall organisation of these

procedures is similar in most implementations.

A procedure called ABORT completes the set of post-mortem procedures.

ABORT can be called from within a program or via an appropriate operating

system facility (such as program store trap). We conclude this section with the text

of this post-mortem package as implemented on the ModComp II machine (a

16-bit word-addressed minicomputer).

GET "LIBHDR"

MANIFEST $(ENTRYW0RD1 =#XF813

ENTRYW0RD2 =#XF630

COUNTWORD =#XC0E0

GLOBWORD =#XAAAA

LIBRWORD =#XBBBB

SECTWORD =#XE7FF

$)

LET ABORT(CODE, ADDR, OLDSTACK) BE

$(1 WRITEF("*N*NFAULT ?SN*N", CODE)

WRITEF("ADDR = #£X4, STACK POINTER = #??X4*N" ,

ADDR, OLDSTACK)

BACKTRACE(ADDR, OLDSTACK)

MAPSTORE()

STOP(100)

$)1

LET BACKTRACE(ADDR, STACKP) BE

$(1 LET P = STACKP

LET Q, L, F = P+9, 0, 0

WRITES("*NBACKTRACE CALLED*N”)

WRITES("*N P LINK FUNCT?*

* VARI VAR2 . . .*N*N")

FOR I = 1 TO 25 DO

$(WRITEF("#^X4: ", P)

UNLESS 500<=P<=32000 BREAK

Debugging and error handling 65

L := P! 0

WRITEARG(L) // link

F := P!l-8 // function name?

TEST (P!-1=LIBRW0RD | F!4=ENTRYW0RD1) &.

GETBYTE(F,0)=7

THEN WRITEF(" ' ?SS' " , F)

ELSE WRITEF(" ")

IF Q>P+7 | Q<P DO Q := P+7

FOR T = P+2 TO Q-l DO WRITEARG(!T)

IF P’0=0 & P!1=0 DO $(WRITES("*NBASE OF STACK*N")

BREAK $)

UNLESS 500<=L<=32000 DO

$(WRITES("*NIMPROPER LINK*N")

BREAK $)

NEWLINE()

Q := P

P := P - !L $)

WRITES("*NEND OF BACKTRACE*N*N") $)1

LET MAPST0REO BE

$(1 LET K = 0 // used for layout

LET G = GLOBBASE

LET GSIZE = G!0

WRITEF("STACKBASE=#^oX4, STACKEND=#%X4*N" ,

STACKBASE, STACKEND)

WRITEF("*NVALUES SET IN THE GLOBAL VECT0R(#?SX4) ", G)

TEST 100<=GSIZE<=10000

THEN WRITEF("%N GLOBALS ALLOCATED*N", GSIZE)

ELSE $(GSIZE := 400

WRITES("GLOBAL ZERO CORRUPTED*N") $)

66 Debugging and error handling

FOE T = 1 TO GSIZE DO

UNLESS G!T=GLOBWORD DO

$(IF K REM 4 = 0 DO NEWLINE()

K := K + 1

WRITEF(" G?SI3 ", T)

WRITEARG(G!T) $)

WRITES("*N*N*N")

K := 0

WRITEF("MAP AND COUNTS FROM #%X4 TO #?SX4*N" ,

LOADPOINT, ENDPOINT)

FOR P = LOADPOINT TO ENDPOINT-2 DO

$(IF !P=COUNTWORD A (P!l=P+3 | P!l=P-9) DO

$(IF K REM 4 = 0 DO NEWLINE()

K s= K + 1

WRITEF(" #?SX4: %I7 ", P, P!1!0) $)

IF !P=SECTWORD & GETBYTE(P+ 2,0) = 15 DO

$(WRITEF("*N*N#?SX4 SECTION %S SIZE %N*N",

P, P+2, P!1-P)

K := 0 $)

IF (P!4=ENTRYW0RD1 & P!5=ENTRYWORD2) |

P!(-1)=LIBRW0RD DO

IF GETBYTE(P,0)=7 DO

$(IF K REM 4 = 0 DO NEWLINE()

K := K + 1

WRITEF("#?SX4/?SS ", P+4, P) $)

$)

WRITES("*N*NEND OF MAP*N*N")

$)1

AND WRITEARG(V) BE

$(1 LET F = V - 4

IF F!-1=LIBRW0RD | V!0=ENTRYWORD1 DO

IF GETBYTE(F,0)=7 DO

$(WRITEF(" ’%S"', F)

RETURN $)

WRITEF(#^X4", V) $)1

Debugging and error handling 67

5.5 TRACE and the profile option

TRACEFN is a procedure which outputs a summary of each activation of the

procedures in a program. The summary takes the form of the procedure name,

the values of the parameters on entry and the value of the stack pointer on entry.

This information is output when the procedure is entered if the global variable

TRACING is set to true. An appropriate compiler option (see your implemen¬

tation notes) will cause calls to TRACEFN to be inserted automatically. Thus you

can select the use of TRACEFN by manipulating TRACING, and by using the

compiler option, so that only the required tracing output is generated.

The profile option causes additional statistics to be gathered, whilst the pro¬

gram is running, for subsequent output by MAPSTORE. Use of the option causes

extra instructions to be compiled to maintain execution counts at certain places in

the compiled code. The locations and values of these counts can be related to the

original source program with little difficulty. In effect, an execution count for each

linear sequence of commands (i.e. the body of a loop, alternatives in conditional

commands etc.) is maintained.

The advantages of the profile option include:

1. after a catastrophic error, it indicates those parts of the program that were

never executed;

2. it helps to find inner loops and frequently executed sequences;

3. studying the profile counts of a large program tends to increase understand¬

ing of the way the program works in practice (e.g. the effectiveness of a

freestore-management strategy, or a hashing function);

4. the option is relatively cheap, typically adding 20% to the size and execution

time of a program.

5.6 DEBUG: an interactive debugging system

DEBUG was written as an interactive debugging aid for BCPL programs running

on the ModComp II computer under the MAXCOM system. DEBUG allows one to

inspect the state of the BCPL program and read or update any location in store.

The user can insert and remove breakpoints in his compiled program, and cause

continuation after inspecting variables etc.

DEBUG maintains 17 words of memory consisting of 16 variables V0 to V15 and a

special word called the current value. The current value can be set by typing a basic

expression. Examples of every kind'of basic expression are given below:

1265 a decimal number

#7FFD a hexadecimal number

V3 the value of a variable

V the address of the vector of variables

G31 the value of a global variable

G the base of the global vector

68 Debugging and error handling

The current value can be modified by typing an operator and possibly a second

basic expression. Operators available are: (remainder after division),

< (left shift), > (right shift), 4, % (logical-or), ! (indirection; . is a synonym for !).

Complicated expressions may be typed, but parentheses are not permitted and

evaluation is strictly left to right.

Commands are identified by a single character. Typical commands (in all some

18 are available) are:

=
print the value of the current expression in the currently selected

style;

C, H, 0, D used to select the printing style for values;

print the contents of the location addressed by the current value;

U update a general store location;

Sn update variable Vn;

Pn update global n;

L list a region of store;

X call a specified BCPL procedure with up to five arguments;

Fn search store for a specified value;

Bn set or unset breakpoint n;

Q exit from DEBUG (continue after breakpoint).

Even though DEBUG is machine dependent, it is a good example of a small yet

powerful facility, and the following code can form a useful basis for similar

systems on many other machines.

GET "LIBHDH"

GLOBAL $(GLOB0:0 $)

MANIFEST $(

INSTB.SIB.3=#X2683

$)

STATIC $(CH=0; VARS=0; STYLE=0; GLOBBASE=0

INSTR=0; ADDR=0

REC.P=0; REC.L=0 $)

LET DEBUG() = VALOF

$(1 LET A = 0

LET RDCHSAV, WRCHSAV = RDCH, WRCH

VARS := TABLE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0

INSTR := TABLE 0,0,0,0,0,0,0,0,0,0

ADDR := TABLE 0,0,0,0,0,0,0,0,0,0

STYLE := " £X4"

GLOBBASE := SGLOB0

REC.P, REC.L := LEVEL(), NXT

Debugging and error handling 69

TEST STANDALONE

THEN $(LET BREAKNO = -1

FOR I = 0 TO 9 DO

IF !#X26=ADDR!1+1 DO BREAKNO := I

RDCH, WRCH := SQRDCH, SOWRCH

TEST BREAKNO<0

THEN WRITES("*NSTANDALONE DEBUG*N")

ELSE $(LET SIZE = INSTRSIZE(INSTR!BREAKNO)

LET T = TABLE 0,0,0,0,0,0

A := ADDR!BREAKNO

T!0 := INSTR!BREAKNO

FOR I = 1 TO SIZE-1 DO T!I := A!I

T!SIZE := #XE700 // BRU

T!(SIZE+1) := A + SIZE

!#X26 := T // plug resumption address

WRITEF("BREAK NO J?N AT 55X4*N" , BREAKNO, A)

$)

$)
ELSE WRITES("*NDEBUG*N")

NXT:CH := RDCH()

SW: SWITCHON CH INTO

$(DEFAULT: ERROR("BAD COMMAND %C", CH)

CASE '*N':

CASE '*S': GOTO NXT

CASE :CASE ' V1:CASE ' G ’:

CASE '0':CASE ' 1':CASE '2':CASE ’3' : CASE '4'

CASE '5':CASE ' 6':CASE 17':CASE '81 : CASE '9'

A : = RBEXP()

GOTO SW

CASE '.':CASE ' !':CASE 1 + ':CASE '-' : CASE 1 * *

CASE '/':CASE ' 1’:CASE '<’:CASE ’>' :

CASE 1 &':CASE 1 %' :

A := REXP(A)

GOTO SW

CASE ’ C' : STYLE := " %C"; GOTO NXT

CASE ’H1 : STYLE := " 55X4"; GOTO NXT

CASE ’O’: STYLE := " 5506"; GOTO NXT

CASE 1 D’ : STYLE := " 5516"; GOTO NXT

70 Debugging and error handling

CASE 'X': A := A(VARS! 0, VARS!1,VARS!2,VARS!3,VARS!4)

GOTO NXT

CASE 'O': CH := RDCH()

!A := REXP(RBEXP())

GOTO SW

CASE 'I': A := A+l

GOTO NXT

CASE 'L': CH := RDCH()

FOR I = 0 TO RBEXPO-l DO

$(IF I REM 8 = 0 DO $(NEWLINE()

PRADDR(A+I) $)

WRITEF(STYLE,A!I) $)

NEWLINE()

GOTO NXT

CASE '=': WRITEF(STYLE, A)

NEWLINE()

GOTO NXT

CASE ’N': A := A+l

CASE WRITEF(STYLE, !A)

NEWLINE()

GOTO NXT

CASE 'B': // 0 B unset all Break points

// 0 Bn unset break point n

// A Bn set break point n to addr A

$(LET N = -1

CH := RDCH()

IF '0'<=CH<='9' DO

$(N := CH-'0'

CH := RDCH() $)

IF A=0 DO

$(FOR I = 0 TO 9 DO IF I=N | N<0 DO

IF ADDR!I NE 0 DO

$(!(ADDR!I) := INSTRII // UNSET BREAK PT

ADDR!I := 0 $)

GOTO SW $)

IF INSTRSIZE(!A)=0 | N<0 | ADDR!N NE 0 DO

ERROR("BAD BREAK")

Debugging and error handling 71

INSTR!N, ADDR!N := !A, A

!A := INSTR.SIR.3

GOTO SW

$)

CASE 'F': $(LET W, M = VARS!0, VARS!1

CH := RDCH()

FOR I = 1 TO RBEXP() DO

$(IF ((! A NEQV W)AM)=0 GOTO SW

A := A+l $)

WRITES("BAD FIND")

GOTO SW $)

CASE 'P1: CH := RDCH()

GLOBBASE:RDN(10) := A

GOTO SW

CASE 'S’: CH := RDCH()

VARS!RDVN() := A

GOTO SW

CASE ’T’: BACKTRACES, A); GOTO NXT

CASE 'M1: NEWLINEO

MAPSTORE()

GOTO NXT

CASE 'Q1: WRITES(" EXIT FROM DEBUG*N")

RDCH, WRCH := RDCHSAV, WRCHSAV

RESULTIS A

$)

$)1

AND RDN(RADIX) - VALOF

$(1 LET A, SW = 0, FALSE

$(LET D = -1

IF 101<=CH<=19' DO D := CH-'0'

IF 'A'<=CH<='F' DO D := 10+CH-'A'

UNLESS 0<=D<RADIX BREAK

SW := TRUE

A := A*RADIX + D

CH := RDCH() $) REPEAT

72 Debugging and error handling

UNLESS SW DO ERROR("BAD NUMBER")

RESULTIS A $)1

AND RDVN() = VALOF

$(1 LET A = RDN(10)

UNLESS 0<=A<=15 DO ERROR("BAD VARIABLE")

RESULTIS A $)1

AND RBEXP() = VALOF SWITCHON CH INTO

$(1 DEFAULT: ERROR("BAD EXPRESSION")

CASE '0':CASE '11:CASE ’2’:CASE '31:CASE '4':

CASE '5':CASE '61:CASE '7':CASE '8':CASE '9':

RESULTIS RDN(10)

CASE : CH := RDCH()

RESULTIS RDN(16)

CASE 1G': CH := RDCH()

UNLESS '0'<=CH<='9' RESULTIS GLOBBASE

RESULTIS GLOBBASE!RDN(10)

CASE 'V': CH := RDCH()

UNLESS '0'<=CH<='9' RESULTIS VARS

RESULTIS VARS!RDVN()

CASE CH := RDCH(); RESULTIS -RBEXP()

CASE CH := RDCH(); RESULTIS RBEXP()

AND B() = VALOF $(CH := RDCH()

RESULTIS RBEXP() $)

AND REXP(A) = VALOF

$(1 SWITCHON CH INTO

$(DEFAULT: RESULTIS A

CASE ’.':

CASE '!': A := !A; CH := RDCH(); LOOP

CASE '+': A := A+B(); LOOP

CASE A := A-B(); LOOP

CASE A := A*B(); LOOP

CASE '/'■■ A : = A/B(); LOOP

CASE A := A REM B() ; LOOP

Debugging and error handling 73

CASE A := A«B() ; LOOP

CASE A := A»B(); LOOP

CASE A := AAB(); LOOP

CASE A := A|B(); LOOP

$)
$)1 REPEAT

AND PRADDR(A) BE

$(1 A := A & #77777

TEST GLOBBASE<=A<=GLOBBASE+GLOBBASE!0

THEN WRITEF(" G%13 ", A-GLOBBASE)

ELSE TEST VARS<=A<=VARS+15

THEN WRITEF(" V?S12# ", A-VARS)

ELSE WRITEF("%I6", A)

WRITEF("(?SX4): ", A) $)1

AND INSTRSIZE(INS) = VALOF

$(1 LET F = INS»8

LET T = TABLE // 2 bits per op code

// 0 if unbreakable otherwise the size

// except for CBMB and CRMB

4X5540,4X5555, 0, 0,

4X5555,#X5555,#X5555,4XAAAA,

#X5555,4X5551, 0, 0,

4X5555,4X5551,4XAAAA,4XAAAA,

4XA8FC, 0,4X54AB,4X54AB,

4XA0A0.4X000F,4X5050,4X5050,

4XA8FC, 0,4X54AB,4X54AB,

4XAAAA,4XAAA8,4X5554,4X5555

IF F=4X87 | F=4XC7 RESULTIS 4 // CBMB or CRMB

IF F=4XE7 & (INS&4XF0) NE 0 RESULTIS 0

// BLM is unbreakable

RESULTIS T! (F»3)»14-2* (F&7) &. 3

$)1

AND ERROR(S, A) BE

$(1 NEWLINE()

WRITEF(S, A)

NEWLINE()

UNTIL CH='*N' DO CH := RDCH()

LONGJUMP(REC.P, REC.L) $)1

74 Debugging and error handling

5.7 Runtime potholes and traps

Even the most careful programmer will occasionally be baffiled by some runtime

errors, and the inexperienced newcomer will undoubtedly experience greatest

difficulty here. However, he should take encouragement from the fact that BCPL

is an order of magnitude easier to write and debug than assembly code, and that

many large BCPL programs have been made to run with little difficulty.

We now discuss some of the more common causes of perplexity that have been

noted by those engaged in introducing and teaching BCPL.

5.7.1 Missing procedure

This is a frequent cause of problems and can occur, for example, if a global

procedure is omitted altogether, or its name is mistyped in its declaration. The

declaration of a global variable at the head of a program allows the compiler to

accept calls to a procedure with this name from any part of the program. The

compiler assumes that the global variable will contain, at the time of call, the

procedure value (normally the entry address) of the procedure. There is no check

that the procedure has in fact been provided, indeed it may well be presented as

part of a separately compiled module. Omission of the procedure altogether will

usually cause the program to abort in some implementation-dependent way, often

generating a post-mortem dump.

5.7.2 Erroneous allocation of global variables

It is neither possible nor desirable for the compiler to check that global variables

have been allocated distinct locations in the global vector. Hence it is possible for

the same global location to be used accidentally for two purposes at the same time,

possibly as the result of mistyping a global number. A possible effect of this error is

that either the wrong procedure is called, or the procedure value is destroyed, or

the value of a variable is unexpectedly changed.

5.7.3 Misuse of procedure values

In some languages (e.g. Algol 60), you assign to the function name as a method of

specifying the result of the function call. This is not the case in BCPL, since the

body of a function is an expression (usually a valof-expression). However, it is not

uncommon for newcomers to BCPL to assign to the function name. This results in

the destruction of the procedure value (i.e. the function’s start address), almost

certainly causing a catastrophic fault the next time the function is called. Omitting

the brackets in a parameterless function call will produce the procedure value of

the function, not the result of calling it.

Debugging and error handling 75

5.7.4 Misuse of pointers and subscripts

This error is frequently committed. The result is often spectacular, as vectors are

usually stored on a stack together with procedure links and dynamic variables.

Corruption of a link can cause unexpected jumps and loops. Sometimes this error

simply results in the values of other variables being mysteriously altered. If a

procedure value is corrupted to zero then on some implementations this can result

in re-entry to the entire program. Corruption of the stack can also devalue the

effectiveness of runtime tracing and post-mortem systems. On some implemen¬

tations it is possible to overwrite the program if a subscript is out of bounds by a

substantial amount, or if a vector or pointer is used before it is initialised.

5.7.5 Simultaneous declarations

The facility in BCPL to declare several variables and procedures simultaneously

can lead to unexpected results, illustrated by the following example:

LET A = 5

AND B = A + 2

This is, in fact, unlikely to place the value 7 in B. The assignments implied in the

declaration may be performed in either order. This can lead to a program

working on one installation but not another. The AND construction is never

needed for simple variables and should only be used when really necessary for

procedures.

5.7.6 Multiple use of the same name

It is easy to forget that a local variable will take precedence over a global of the

same name. Note also that (unlike many other programming languages) the

following block contains two separate variables I:

$(LET 1 = 0

FOB 1=0

$(. . .

$)

$)

TO 5 DO

// only the controlled variable I

// of the for-coimnand is accessible here

// and the original I will have the same

// value as it had before the for-loop

76 Debugging and error handling

5.7.7 Effects of BCPL call-by-value

An easy trap for ex-Fortran programmers is to assign to a formal parameter inside

a procedure, expecting this to result in an assignment to the actual parameter. It

does not.

5.7.8 Erroneous use of GOTO

Ex-Algol programmers tend to forget that a BCPL goto-command cannot be used

to cause the logical termination of a procedure (unwinding the stack etc.). If this is

attempted the program often continues to run for some time without obvious

error until it collapses mysteriously. In normal BCPL programs, the experienced

programmer finds that he does not need to use GOTO very often, and when he does

it is almost always to a label within the same procedure. In the rare cases when exit

from a procedure using the effect of GOTO is perceived as necessary, then the

library procedures LEVEL and LONG JUMP should be used (see chapter four).

5.7.9 ENDCASE

If ENDCASE is omitted at the end of a group of commands labelled by a case-label

within a switchon-command, then control passes through to the next CASE.

Curious effects can result from accidental omission of ENDCASE.

5.7.10 The dangling-reference problem

This problem occurs when the address of some dynamic variable (or perhaps a

vector) in a procedure is preserved, say, in a global. Subsequently an exit is made

from the procedure, and then the global is used. The result is a reference to a

variable which the compiler has deallocated.

5.7.11 Omission of operators

Some newcombers to BCPL find it difficult to remember that vectors in BCPL are

accessed as V! (N+1) ,_not as V (N+1) or V [N+1]. The compiler treats both of the

latter as a call on the function V. Equally, writing

A + 4 (B + C)

Debugging and error handling 77

instead of

A + 4 * (B + C)

will cause, on many implementations, a subroutine jump to location 4 of the

machine.

5.7.12 Operator precedence errors

In a typeless language we have to consider the relative precedence of operators

that normally have no relation with each other. For example, consider

A+l « N and A + 1«N

Intuitively they mean different things. Syntactically they are equivalent, and in

fact both mean (A+1)«N as + takes precedence over «. A similar source of

errors is in expressions such as contained in

IF AM = BM DO . . .

This means

IF (A & (#77=B)) & #77 DO ...

If A happens to match the representation for false, or if A matches true and B is not

equal to #77, then the condition will be false. Otherwise the result is implemen¬

tation dependent! The precedence rules of BCPL cannot be blamed, as the

following example shows:

IF A='X' & B='Y' DO ...

This time the intuitive meaning is correct:

IF (A='X') & (B='Y') DO ...

5.7.13 Parameter mismatches

It is easy to forget, after using Algol or PL/I, that there is no type-checking of

BCPL parameters, or indeed that the desired number of parameters has been

provided.

78 Debugging and error handling

5.7.14 Uninitialised variables

The initial contents of vectors and globals are not defined in BCPL. In many

implementations, the store locations corresponding to the global vector might be

initialised to zero or some other value (e.g. the address of ABORT, to trap the

missing procedure error described above). Vectors use re-usable store so this

certainly should not be relied upon. In general the store will contain rubbish

which will vary from run to run. If your program behaves differently every time

you run it, or only sometimes works, then this could well be a sign that a location is

being used before being initialised.

5.7.15 Selecting the wrong output

Great care should be taken to ensure that the correct output stream is selected at

all times. This is particularly the case when diagnostics are being generated. It is

easy to mix diagnostics with other output. If this output is binary, then the

program simply generates corrupt binary output with no visible indication why.

6

The BCPL lexical and syntax analyser

In this chapter a substantial body of BCPL text is presented and discussed in

detail. It consists of an important part of the BCPL compiler and has been

included here for many reasons. In the first place, it is a realistic example of how

BCPL is used in practice. It has been carefully written and is used to exhibit

various points relating to programming style in BCPL and it also contains many

examples of programming techniques that are well suited to BCPL. In addition,

the complete understanding of this program helps to consolidate one’s knowledge

of the BCPL syntax. It is also likely to be useful to those people involved in writing

compilers in high-level languages, particularly if they plan to use BCPL for the

purpose.

Before describing the syntax analyser in detail, it is necessary to give a brief

description of the overall structure of the compiler in order to clarify the context

in which the syntax analyser runs. The compiler is implemented in three passes

called SYN, TEN and CG as shown in figure 6.1.

Fig. 6.1 The structure of the BCPL compiler

SYN is the pass that performs the syntax analysis of the raw BCPL source and

converts it into the tree structure held in main memory called the applicative

expression tree (AE tree). This tree is then processed by the translation phase TRN

to produce a linear sequence of statements in an intermediate code called

OCODE. The OCODE form is then translated into either relocatable binary or

assembly code for the target machine by the code generator (CG). OCODE has

been carefully designed so that it can be translated with reasonable efficiency into

the machine codes of most computers. It is described in detail in the next chapter.

All three passes are normally coded in BCPL. Although the code generator must

necessarily be different for different computers, the passes SYN and TRN are

almost entirely machine independent and so this part of the compiler is nearly the

same for each implementation of BCPL.

79

80 The lexical and syntax analyser

6.1 The lexical analyser

When compiling BCPL it is convenient to break up the raw source text of the

program into a sequence of the basic symbols of the language. There are about 75

such symbols, many of which are represented by reserved words, such as LET and

RETURN. Numerical constants, string constants, and identifiers are regarded as

basic symbols, and so are composite symbols such as := and ->. The lexical

analyser is implemented as a routine NEXTSYMB which is called by the syntax

analyser whenever it requires another basic symbol from the source program. The

syntax analyser does no backtracking. That is, it performs the analysis while

reading the basic symbols in one at a time without having to reconsider a symbol

previously dealt with.

Within the compiler, the basic symbols are represented by small positive

integers as specified in the manifest declaration appearing in the syntax-analyser

header file given in lines 1 to 60 of the listing. Thus, for instance, S .GE (=25),

declared on line 10, is used to denote the basic symbol >=. The use of manifest

constants for this purpose is extremely beneficial to the readability of the program

by eliminating the need for the programmer to remember which integer cor¬

responds to which basic symbol. Such manifest constants are often used in

case-labels to good effect.

The lexical and syntax analyser 81

1 // SYNHDR

2

3 GET "LIBHDR"

4

5 MANIFEST $(// AE tree operators

6 S.NUMBER=1; S.NAME=2; S.STRING=3; S.TRUE=4; S.FALSE=5

7 S.VAL0F=6; S.LV=7; S.RV=8; S.VECAP=9; S.FNAP=10

8 S.MULT=11; S.DIV=12; S.REM=13

9 S.PLUS=14; S.MINUS=15; S.NEG=17

10 S.EQ=20; S.NE=21; S.LS=22; S.GR=23; S.LE=24; S.GE=25

11 S.NOT=30; S.LSHIFT=31; S.RSHIFT=32; S.L0GAND=33; S.L0G0R=3

12 S.EQV=35; S.NEQV=36; S.C0ND=37; S.C0MMA=38; S.TABLE=39

13 S.AND=40; S.VALDEF=41; S.VECDEF=42; S.C0NSTDEF=43

14 S.FNDEF=44; S.RTDEF=45

15 S.ASS=50; S.RTAP=51; S.G0T0=52; S.RESULTIS=53; S.C0L0N = 5.

16 S.TEST=55; S.F0R=56j,S.IF=57; S.UNLESS=58

17 S.WHILE=59; S.UNTIL=60; S.REPEAT=61; S.REPEATWHILE=62

18 S.REPEATUNTIL=63

19 S.L00P=65; S.BREAK=66; S.RETORN=67; S.FINISH=68

20 S.ENDCASE=69; S.SWITCHON=70; S.CASE=71; S.DEFAULT=72

21 S.SEQ=73; S.LET=74; S.MANIFEST=75; S.GL0BAL=76; S.STATIC=7

22

23 // other basic symbol codes

24 S.BE=89; S.END=90; S.LSECT=91; S.RSECT=92; S.GET=93

25 S.SEMIC0L0N=97; S.INTCM98

26 S.T0=99; S.BY=100; S.DO=101; S.OR=102

27 S.VEC=103; S.LPAREN=105; S.RPAREN=106

28 $)

29

30 GLOBAL $(// globals used in LEX

31 CHBUF:100; DECVAL:101

32 GETV:103; GETP:104; GETT:105

33 WORDV: 106; WORDSIZE: 107; CHARV-.108; CHARP:109

34 PRSODRCE:110; PRLINE:111; READNUMBER:112; RDSTRCH:113

35 SYMB:115; WORDNODE:116; CH:117

36 RDTAG:118; PERFORMGET:119

37 NEXTSYMB: 120; DECLSYSWORDS:121; NLPENDING: 122;CODEP:123

38 LOOKUPWORD:125; RCH:126; LEXTRACE:127; OPTION:128

39 WRCHBUF:131; CHC0UNT:132; LINECOUNT:133

40 NULLTAG:134; REC.P:135; REC.L:136

41

82 The lexical and syntax analyser

NEXTSYMB is a parameterless routine which causes the global variable SYMB to

be set to the integer code for the next basic symbol of the source program each

time it is called. On entry the global variable CH contains the next character of the

source stream and on exit it holds the first character following the Basic symbol

recognised.

For some symbols, additional information is passed in the variables DECVAL,

WORDSIZE and WORDNODE. If the basic symbol was the first symbol to appear on a

line, then the global variable NLPENDING contains the value true. The definition

of NEXTSYMB is given starting at line 65 of the listing.

After initialising NLPENDING to false, NEXTSYMB switches on the character in

CH and takes appropriate action as described below.

The characters tab, newline and space are ignorable and are read in until the

first non-ignorable character is found. While reading newpage and newline, it is

necessary to increment the line count and set the NLPENDING flag to true. This

flag is used in the syntax-analyser routine REXP to deal with the rule concerning a

dyadic operator occurring as the first symbol of a line (see page 114). If the

character is a digit, then it starts a decimal number. The number is read in and

evaluated using the routine READNUMBER which is described later. On exit from

READNUMBER, CH will already contain the next character of the source program

and so NEXTSYMB returns directly.

The lexical and syntax analyser 83

42 // globals used in SYN

43 RDBLOCKBODY:140; RDSECT:141

44 RNAMELIST:142; RNAME:143

45 REXP:144; RDEF:145; RC0M:146

46 RDCDEFS:147; NAMETABLE:148

47 FORMTREE:150; SYNREPORT:151; PLIST:152

48 CHECKFOR:153; IGNORE:154; REXPLIST:155; RDSEQ:156

49 LIST1:161; LIST2:162; LIST3:163

50 LIST4:164; LIST5:165; LIST6:166

51 NEWVEC:167; TREEP:168; TREEVEC:169

52 CHARCODE:190; REPORTCOUNT:191; REPORTMAX:192

53 SOURCESTREAM:193

54 $)

55

56 MANIFEST $(// selectors

57 H1=0; H2=l; H3=2; H4=3; H5=4; H6=5

58 NAMETABLESIZE=100

59 $)

60 .
61 // LEX1

62

63 GET "SYNHDR"

64

65 LET NEXTSYMBO BE

66 $(1 NLPENDING := FALSE

67

68 $(2 IF LEXTRACE DO WRCH(CH)

69

70 SWITCHON CH INTO

71

72 $(S CASE '*P':

73 CASE '*N': LINECOUNT := LINECOUNT + 1

74 NLPENDING := TRUE // ignorable characters

75 CASE 1*T':

76 CASE '*S': RCH() REPEATWHILE CH='*S'

77 LOOP

78

79 CASE '0':CASE ’l':CASE '2':CASE '3':CASE '4':

80 CASE 1 51CASE 1 6 ' : CASE ' 7 ' : CASE '8': CASE '9':

81 SYMB := S.NUMBER

82 READNUMBER(10)

83 RETURN

84

84 The lexical and syntax analyser

If CH is in the range A to Z, then it starts either a name or a system word; in either

case, the characters of the word are read and packed into the vector WORDV by a

call of RDTAG. The word is then looked up in a symbol table using the function

LOOKUPWORD. This function deals with both reserved words and identifiers and is

described later. If the symbol happens to be the reserved word GET, then the

get-directive is obeyed by a call of PERPORMGET. Both opening and closing section

brackets begin with the character $ and can have a tag composed of the same

characters that may appear in identifiers. It is therefore natural to use the routine

RDTAG to read in this tag. The argument to RDTAG is normally the first character

of an identifier, but, when it is used to read a section-bracket tag, the character $ is

passed as an artificial first character to eliminate any possible confusion with other

identifiers or system words when the tag is looked up in the symbol table by

LOOKUPWORD.

Many characters (e.g. + ;&.= !) correspond directly to basic symbols and are

handled simply. For example, the code for + is on line 117. Before returning from

NEXTSYMB, it is necessary to update CH with the next character of input, and this is

achieved by executing the call of RCH which occurs at the end of the body of

NEXTSYMB. This point is reached by executing the command BREAK.

The lexical and syntax analyser 85

85 CASE 'A':CASE 'B':CASE 'C':CASE 'D':CASE 1 E' :

86 CASE 1F':CASE 'G':CASE 'H’:CASE 1I':CASE J' :

87 CASE 'K1:CASE 'L':CASE 'M':CASE 'N’:CASE ' O' :

88 CASE 'P':CASE 'Q':CASE 'B':CASE 'S':CASE ' T' :
89 CASE 'U':CASE 'V':CASE ’W:CASE 'X':CASE ' Y' :

90 CASE ' Z' :

91 RDTAG(CH)

92 SYMB := L00KUPW0RDO

93 IF SYMB=S.GET DO $(PERFORMGET(); LOOP $)

94 RETURN

95

96 CASE : RCH()

97 UNLESS CH='(' | CH=')' DO SYNREPORT(91)

98 SYMB := CH='(' -> S.LSECT, S.RSECT

99 RDTAG('$')

100 LOOKUPWORDO

101 RETURN

102

103 CASE ' [1 :
104 CASE '(': SYMB := S.LPAREN; BREAK

105 CASE ' 1 ' s
106 CASE ')’: SYMB := S.RPAREN; BREAK

107

108 CASE '#' :

109 SYMB := S.NUMBER

110 RCH()

111 IF '0'<=CH<='7' DO $(READNUMBER(8); RETURN

112 IF CH='B' DO $(RCH(); READNUMBER(2); RETURN

113 IF CH='0' DO $(RCH(); READNUMBER(8); RETURN

114 IF CH='X' DO $(RCH(); READNUMBER(16) ; RETURN

115 SYNREPORT(33)

116

117 CASE '+': SYMB := S.PLUS; BREAK

118 CASE SYMB := S.COMMA; BREAK

119 CASE SYMB := S.SEMICOLON; BREAK

120 CASE 13': SYMB := S.LV; BREAK

121 CASE SYMB := S.LOGAND; BREAK

122 CASE '|': SYMB := S.LOGOR; BREAK

123 CASE '=': SYMB := S.EQ; BREAK

124 CASE SYMB := S.VECAP; BREAK

125 CASE '**':SYMB := S.MULT; BREAK

126

$)

$)

$)
$)

86 The lexical and syntax analyser

Certain other characters (e.g. - < :) can start composite basic symbols and the

treatment of these is exemplified by the program for < on line 154.

The lexical and syntax analyser 87

127 CASE ' :

128 RCH()

129 IF CH='\' DO $(SYMB := S.LOGAND; BREAK $)

130 IF CH='/' DO

131 $(RCH() REPEATUNTIL CH='*N' | CH=ENDSTREAMCH

132 LOOP $)

133

134 UNLESS CH='* *' DO $(SYMB := S.DIV; RETURN $)

135

136 $(RCH()

137 IF CH='**' DO

138 $(RCH() REPEATWHILE CH='**'

139 IF CH='/' BREAK $)

140 IF CH=' *N’ DO LINECOUNT := LINECOUNT+1

141 IF CH=ENDSTREAMCH DO SYNREPORT(63)

142 $) REPEAT

143

144 RCH()

145 LOOP

146

147

148 CASE ' \ ' : RCH()

149 IF CH='/' DO $(SYMB := S.LOGOR; BREAK $)

150 IF CH='=' DO $(SYMB := S.NE; BREAK $)

151 SYMB := S.NOT

152 RETURN

153

154 CASE : RCH()

155 IF CH='=1 DO $(SYMB := S.LE; BREAK $)

156 IF CH='<' DO $(SYMB := S.LSHIFT; BREAK $)

157 SYMB := S.LS

158 RETURN

159

160 CASE : RCH()

161 IF CH='=' DO $(SYMB := S.GE; BREAK $)

162 IF CH='>' DO $(SYMB := S.RSHIFT; BREAK $)

163 SYMB := S.GR

164 RETURN

165

166 CASE t _ 1 : RCH()

167 IF CH='>' DO $(SYMB := S.COND; BREAK $)

168 SYMB := S.MINUS

169 RETURN

170

88 The lexical and syntax analyser

String constants are enclosed in double quotes and may contain up to 255 string

characters. These characters are read using the function EDSTECH and are stored

in the vector CHAEV one by one. These characters are then packed into the vector

WOEDV using the library procedure PACKSTEING. The result of this call is

assigned to WOEDSIZE, being the subscript of the highest element of WOEDV that is

used in the packed string. One should note that this part of the lexical analyser will

work whatever the word length of the machine on which the compiler is running,

since the machine-dependent knowledge of how strings are packed is entirely

encapsulated in the library routine PACKSTEING. PACKSTEING is used for the

same purpose in EDTAG in the treatment of identifiers and section bracket tags.

A character constant is a string character enclosed in single quotes and is

semantically equivalent to a number. The value of the number must be known

early in the compilation since character constants can be used in manifest

expressions. But since it depends on the character code of the target machine,

which may be different from the code used in the compiling machine, it is

necessary to perform a code conversion. This is done by the function CHAECODE

which is set up in the steering program of the compiler. CHAECODE is also used in

TRN to convert the codes of string characters as they are converted into OCODE

form.

Either a dot or an end-of-stream character can mark the end of a section of

program. If the current input is from a get-stream (see page 96), then the previous

input is resumed, otherwise the end of the program is indicated by setting S YMB to

the value S. END. Notice that illegal characters cause a syntax error message to be

generated, by the call SYNREPOHT(94) and that this call is made after assigning

the character ' * S' to CH in order to prevent an infinite repetition of this error

message.

The lexical and syntax analyser 89

171 CASE ':': : RCH()

172 IF CH='=' DO $(SYMB := S.ASS; BREAK $)

173 SYMB := S.COLON

174 RETURN

175

176

177 CASE "" : : CHARP := 0

178 RCH()

179

180 UNTIL CH="" DO

181 $(IF CHARP=255 DO SYNREPORT(34)

182 CHARP := CHARP + 1

183 CHAR?!CHARP := RDSTRCH() $)

184

185 CHARV!0 := CHARP

186 WORDSIZE := PACKSTRING(CHARV, WORDV)

187 SYMB := S.STRING

188 BREAK

189

190 CASE '*' 1 :RCH()

191 DECVAL := CHARCODE(RDSTRCH())

192 SYMB := S.NUMBER

193 UNLESS CH='* 1 ' DO SYNREPORT(34)

194 BREAK

195

196

197 DEFAULT: UNLESS CH=ENDSTREAMCH DO $(CH := ' *S'

198 SYNREPORT(94)

199 CASE V: IF GETP=0 DO $(SYMB := S.END

200 RETURN $)

201 ENDREAD()

202 GETP := GETP - 3

203 SOURCESTREAM := GETV!GETP

204 SELECJINPUT(SOURCESTREAM)

205 LINECOUNT := GETV!(GETP+1)

206 CH := GETV!(GETP+2)

207 LOOP

208 $)S

209

210 $)2 REPEAT

211

212 RCH()

213 $)1

90 The lexical and syntax analyser

6.2 The function L00KUPW0RD

Identifiers, system words, and section bracket tags are held in a symbol table

maintained by the lexical analyser. This table is organised as a number of lists

whose roots are the elements of a vector called NAMETABLE. When a name is to be

looked up in this table, the function L00KUPW0RD is called with the packed

characters of the name held in the elements of WORDV. The subscript of the

highest element of WORDV that is used is held in the variable WORDSIZE. In order

to select which list to search, L00KUPW0RD computes a simple hash value (on line

223) that depends on the characters in WORDV. It does this by adding together the

first and last words of WORDV as though they were integers, shifting to the right by

one place and then using REM to obtain the result after division by the name table

size. This hash-value computation has been designed with care in order to ensure

that it works reasonably well whatever character code, word length or number

representation is being used. It should be observed that the hash value depends

upon the length and first few characters of the name, since these are held in

WORDV 10, and also the last few characters of the name, since these are held in

WORDV! WORDSIZE. The logical right shift is used to ensure that the left-hand

operand of REM is positive thus assuring a positive hash value. NAMETABLESIZE is

currently declared as a manifest constant equal to 100. It is clear that the same

name may give rise to different hash values on many different implementations of

BCPL, but this does not stop the algorithm from working effectively.

The first word of a name node contains the integer code of the basic symbol that

this node represents. It is, for instance, the manifest constant S . LET in the node

for the system word LET. For an ordinary identifier, it is the manifest constant

S . NAME. The second word in a name node is either zero or a pointer to the name

node of another name having the same hash value. The third and subsequent

words of a name node contain the packed characters of the name. The until-

command in L00KUPW0RD controls the search for a node that matches the name

held in WORDV. Within this loop, W0RDN0DE points to the current name node

under consideration, and the auxiliary variable I is the subscript of the next

element of WORDV to be compared. If the comparision is successful, then I is incre¬

mented, otherwise attention is transferred to the next name node in the list. The

loop continues either until W0RDN0DE is zero indicating that the list is exhausted,

or until I is greater than WORDSIZE indicating that a matching node has been

encountered. In the former case, L00KUPW0RD creates an appropriate new name

node and inserts it at the start of the current list. The space for this node is

obtained by a call for the function NEWVEC which is described later.

The result of L00KUPW0RD is the integer code for the basic symbol that has just

been looked up. Notice that this is extracted from the current name node by the

expression HI 1 W0RDN0DE in which HI is a manifest constant equal to zero. The

manifest constants HI, H2, . . ., H5 are used as selectors in this way throughout the

compiler.

The lexical and syntax analyser 91

214

215 .

216 // LEX2

217

218 GET "SYNHDR"

219

220 LET LOOKUPWORD() = VALOF

221

222 $(1 LET HASHVAL =

223 (WORDV!0+WORDV!WORDSIZE » 1) REM NAMETABLESIZE

224

225 LET I = 0

226

227 WORDNODE := NAMETABLE!HASHVAL

228

229 UNTIL WORDNODE=0 | I>WORDSIZE DO

230 TEST WORDNODE!(I+2)=W0RDV!I

231 THEN I := 1+1

232 ELSE WORDNODE, I := H2!WORDNODE, 0

233

234 IF WORDNODE=0 DO

235 $(WORDNODE := NEWVEC(WORDSIZE+2)

236 WORDNODE!0, WORDNODE!1 := S.NAME, NAMETABLE!HASHVAL

237 FOR I = TO WORDSIZE DO WORDNODE!(1+2):= WORDV!I

238 NAMETABLE!HASHVAL := WORDNODE $)

239

240 RESULTS HI!WORDNODE $)1

241

242 AND DECLSYSWORDS() BE

243 $(1 CODEP := TABLE

244 S.AND,

245 S.BE,S.BREAK,S.BY,

246 S.CASE,

247 S.DO,S.DEFAULT,

248 S.EQ,S.EQV,S.OR,S.ENDCASE,

249 S.FALSE,S.FOR,S.FINISH,

250 S.GOTO,S.GE.S.GR.S.GLOBAL,S.GET,

251 S. IF,S.INTO,

252 S.LET,S.LV,S.LE,S.LS,

253 S.LOGOR,S.LOGAND,S.LOOP,S.LSHIFT,

92 The lexical and syntax analyser

If we look more closely at the coding of the until-command, we find that it is not

entirely optimal since WORDNODE is compared with zero each time I is incremen¬

ted, and I is compared with WORDSIZE each time I is set to zero. Furthermore,

WORDNODE is again compared with zero as soon as the until-loop is terminated

although its value is known at that time as a result of the evaluation of the

termination condition. The program was written this way since it was the most

comprehensible coding that could be found and the slight execution inefficiency is

insignificant. To achieve the more efficient coding one would have had to

complicate the text by the use of labels and goto-commands.

Before the compilation of a program can be started, it is necessary to initialise

the name table with entries for all the reserved words of the language. This is done

by a call for the routine DECLSYSWORDS and, since this is called only once, it was

worthwhile coding as compactly as possible. The method chosen makes use of a

table containing the integer codes for all the reserved-word basic symbols and an

auxiliary routine D which unpicks the reserved words, one at a time, from a string

of them supplied as its argument. It is necessary to make two calls for D since the

string of reserved words would otherwise be too long. The definition of D is

straightforward. Note the use of LOOKUPWORD to insert the reserved words into

the table.

The last node to be added by DECLSYSWORDS is one representing the (null) tag

of an untagged section bracket. The pointer to this last node is assigned to the

variable NULLTAG which is used during syntax analysis by the function RDSECT

described later.

The lexical and syntax analyser 93

254 S.MANIFEST,

255 S.NE,S.NOT,S.NEQV,

256 S. OR,

257 S.RESULTIS,S.RETURN,S.REM,S.RSHIFT,S.RV,

258 S.REPEAT,S.REPEATWHILE,S.REPEATUNTIL,

259 S.SWITCHON,S.STATIC,

260 S.TO,S.TEST,S.TRUE,S.DO,S.TABLE,

261 S.UNTIL,S.UNLESS,

262 S.VEC,S.VALOF,

263 S.WHILE,

264 0

265

266 D("AND/*

267 *BE/BREAK/BY/*

268 *CASE/*

269 *DO/DEFAULT/*

270 *EQ/EQV/ELSE/ENDCASE/*

271 *FALSE/FOR/FINISH/*

272 *GOTO/GE/GR/GLOBAL/GET/*

273 *IF/INTO/*

274 *LET/LV/LE/LS/LOGOR/LOGAND/LOOP/LSHIFT//")

275

276 D("MANIFEST/*

277 *NE/NOT/NEQV/*

278 *OR/*

279 *RESULTIS/RETURN/REM/RSHIFT/RV/*

280 *REPEAT/REPEATWHILE/REPEATUNTIL/*

281 *SWITCHON/STATIC/*

282 *TO/TEST/TRUE/THEN/TABLE/*

283 *UNTIL/UNLESS/*

284 *VEC/VAL0F/*

285 *WHILE/*

286 *$//")

287

288 NULLTAG := WORDNODE $)1

289

290

291 AND D(WORDS) BE

292 $(1 LET I, LENGTH =1,0

293

94 The lexical and syntax analyser

6.3 Miscellaneous lexical analysis procedures

Characters of raw source text are read by the routine RCH which assigns them to

the variable CH for the lexical analyser. It also implements the line-numbered

source-listing option as well as maintaining a circular buffer of the latest 64

characters of source that have been read. The content of this buffer is output

by WRCHBUF as part of any syntax error message generated by the routine

SYNREPORT described on page 102.

The routine RDTAG is used to read in the characters of identifiers, system words,

and section bracket tags and pack them into the vector WORDV, assigning to

WORDSIZE the subscript of the highest element of this vector that is used. The

formal parameter CHARI is used to hold the first character of the tag. For section

bracket tags, this character is a $ to eliminate any possible confusion with

identifiers and reserved words.

The lexical and syntax analyser 95

294 $(LET CH = GETBYTE(WORDS, I)

295 TEST CH='/'

296 THEN $(IF LENGTH=0 RETURN

297 CHARV!0 := LENGTH

298 WORDSIZE := PACKSTBING(CHARV, WORDV)

299 LOOKUPWORD()

300 HI!WORDNODE := !CODEP

301 CODEP := CODEP + 1

302 LENGTH := 0 $)

303 ELSE $(LENGTH := LENGTH + 1

304 CHARV!LENGTH := CH $)

305 I : = I + 1

306 $) REPEAT

307 $)1

308

309

310

311 .
312 // LEX3

313

314 GET "SYNHDR"

315

316 LET RCH() BE

317 $(CH := RDCH()

318

319 IF PRSOURCE & GETP=0 &. CH NE ENDSTREAMCH DO

320 $(UNLESS LINECOUNT=PRLINE DO

321 $(WRITEF("%I4 ", LINECOUNT)

322 PRLINE := LINECOUNT $)

323 WRCH(CH) $)

324

325 CHCOUNT := CHCOUNT + 1

326 CHBUF! (CHC0UNT&.63) := CH $)

327

0
3

to

0
0

AND WRCHBUF() BE

329 $(WRITES (" *N. . . "

330 FOR P = CHCOUNT-63 TO CHCOUNT DO

331 $(LET K = CHBUF!(P&63)

332 UNLESS K=0 DO WRCH(K) $)

333 NEWLINE() $)

334

335

336 AND RDTAG(CHARI) BE

337 $(CHARP, CHARV!1 := 1, CHARI

338

96 The lexical and syntax analyser

The routine PERFOHMGET is called from NEXTSYMB to deal with the get-

directive. It calls NEXTSYMB to read in the basic symbol following the word GET

and a test is made to ensure that it is a string. Before selecting the new stream, it is

necessary to save the current source stream, LINECOUNT and the value of CH in

the. next three words of the vector GETV. The get-stream is then opened and

selected and its first character read. When this stream is eventually exhausted, the

previously selected stream is reinstated by the code occurring near the end of the

body of NEXTSYMB. One should note the natural way in which NEXTSYMB and

PERFORMGET are mutually recursive.

Numerical constants are read in by a simple routine called READNUMBER. This

expects the first digit of the number to be in CH and does the conversion for any

base up to 16 as specified by the parameter RADIX. It uses an auxiliary function

VALUE to convert each digit of the number into its binary value. Non-hexadecimal

digits are given the artificially large value 100 so that the termination test in

READNUMBER works correctly.

The lexical and syntax analyser 97

339

340

341

342

343

344

345

346

347

348

349

350 AND

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366 AND

367

368

369

370

371

372

373

374

375

376

377

378 AND

379

380

381

$(ECHO

UNLESS 1A'<=CH<='Z' |

'0'<=CH<='91 |

CH='.1 BREAK

CHARP := CHARP+1

CHAR?!CHARP := CH $) REPEAT

CHAR?!0 := CHARP

WORDSIZE := PACKSTRING(CHARV, WORD?) $)

PERFORMGETO BE

$(NEXTSYMBO

UNLESS SYMB=S.STRING THEN SYNREPORT(97)

GETV!GETP := SOURCESTREAM

GETV!(GETP+1) := LINECOUNT

GET?!(GETP+2) := CH

GETP := GETP + 3

LINECOUNT := 1

SOURCESTREAM FINDINPUT(WORD?)

IF SOURCESTREAM=0 THEN SYNREPORT(96,WORD?)

SELECTINPUT(SOURCESTREAM)

ECHO $)

READNUMBER(RADIX) BE

$(LET D = ?ALUE(CH)

DEC?AL := D

IF D>=RADIX DO SYNREP0RT(33)

$(ECHO

D := ?ALUE(CH)

IF D>=RADIX RETURN

DEC?AL := RADIX*DEC?AL + D $) REPEAT

?ALUE(CH) = '0'<=CH<='91 -> CH-'0',

'A'<=CH<='F' -> CH-'A'+10,

100

98 The lexical and syntax analyser

Finally, the function RDSTRCH is used to read a single string character allowing

for the escape conventions that are available in string and character constants.

6.4 The applicative expression tree

The result of syntax analysis is a tree structure called the applicative expression tree

(or AE tree) which is an internal representation of the entire source program.

Each node of the tree consists of a small number of consecutive words of store, the

first of which always holds the integer code for an operator or keyword. The

structure of the AE tree is given in table 6.1 in a BNF-like notation in which nodes

are represented as lists of items enclosed in parentheses. The words that appear to

Table 6.1 The structure of the AE tree

E ::= NAME | (STRING, <packed characters>) |
(NUMBER, <value>) | (TRUE)] (FALSE) |
(VALOF, C) | (LV, E) | (RV, E) (
(FNAP, E, E) | (FNAP, E, 0) | (MULT, E, E) |
(DIV, E, E) | (REM, E, E) | (PLUS, E, E) |
(MINUS, E, E) | (NEG, E) | (EQ, E, E) | (NE, E, E) |
(LS, E, E) | (GR, E, E) | (LE, E, E) | (GE, E, E) |
(NOT, E) | (LSHIFT, E, E) | (RSHIFT, E, E) |
(LOGAND, E, E) | (LOGOR, E, E) | (EQV, E, E) | (NEQV, E, E) |
(COND, E, E, E) | (TABLE, E) | (COMMA, E, E)

NAME ::= (NAME, -, <packed characters>)

C ::= (ASS, E, E) | (RTAP, E, E) | (RTAP, E, 0) |
(GOTO, E) | (COLON, NAME, C, -) | (IF, E, C) |
(UNLESS, E, C) | (WHILE, E, C) | (UNTIL, E, C) |
(REPEAT, C) | (REPEATUNTIL, C, E) |
(REPEATWHILE, C, E) | (TEST, E, C, C) | (BREAK) |
(RETURN) | (FINISH) | (RESULTIS, E) |
(FOR, NAME, E, E, 0, C) |
(FOR, NAME, E, E, E, C) |
(SWITCHON, E, C) | (CASE, E, C) | (ENDCASE) |
(DEFAULT, C) | (LET, D, C) |
(MANIFEST, CDEFS, C) | (STATIC, CDEFS, C) |
(GLOBAL, CDEFS, C) | (SEQ, C, C) | 0

CDEFS ::= (CONSTDEF, CDEFS, NAME, E) | 0

D ::= (AND, D, D) | (VALDEF, NLIST, E) |
(VECDEF, NAME, E) | (FNDEF, NAME, FPL, E, -) |
(RTDEF, NAME, FPL, C. -)

NLIST ;:= (COMMA, NAME, NLIST) | NAME

FPL ::= NLIST I 0

The lexical and syntax analyser 99

AND RDSTRCHO = VALOF

$(1 LET K = CH

RCH()

IF K=1 *N' DO SYNREPORT(34)

IP K='**' DO

$(IF CH=’*N' | CH='*S' | CH=1*T' DO

$($(IF CH='*N' DO LINECOURT :=LINECOUNT+1

RCH()

$) REPEATWHILE CH='*N’ | CH='*S' | CH='*T'

UNLESS CH=1 * * 1 DO SYNREPORT(34)

RCH()

RESULTIS RDSTRCHO

$)

399 K : = CH

400 IF CH='T' DO K : = 1 *T

401 IF CH=1S1 DO K : = 1 *S

402 IF CH=’N’ DO K : = 1 *N

403 IF CH=1B’ DO K : = 1 *B

404 IF CH=’P1 DO K : = 1 *p

405 RCH() $)

RESULTIS K $)1

// SYN0

GET "SYNHDR"

LET NEWVEC(N) = VALOF

$(TREEP := TREEP - N - 1

IF TREEP<=TREEVEC DO

$(REPORTMAX := 0

SYNREPORT(98) $)

RESULTIS TREEP $)

420 AND LISTl(X) = VALOF

421 $(LET P = NEWVEC(0)

422 P!0 := X

423 RESULTIS P $)

100 The lexical and syntax analyser

the left of ::= are analogous to syntactic categories and represent pointers to

nodes in the AE tree. All other words appearing in the syntax denote the integer

codes for the types of the nodes. In string and name nodes, the packed characters

occupy as many computer words as they need. The value in a number node

occupies one word. As a general rule, the AE tree structure can be derived from

the BCPL syntax by taking each syntactic construction in turn, selecting a suitable

keyword or operator to distinguish it and laying out the operands in the same

order in which they appear in the source program. For instance, the command

TEST E THEN Cl ELSE C2

has the corresponding AE tree structure

(TEST, E, Cl, C2)

Elements of nodes which are used as working space in the translation phase or

which are list pointers in name nodes are indicated by dashes.

The syntax analysis is performed by the method of recursive descent, and since

this process involves no backtracking it is possible to use a very simple scheme for

the allocation of space used by AE tree nodes. Space for these nodes is taken

from the vector called TREEVEC under the control of a pointer TREEP which

initially points to its last word. Whenever a new node is required, the function

NEWVEC is called with a parameter giving the node’s size. NEWVEC decrements

TREEP by the appropriate amount, checks that there is still space left and then

returns with a pointer to the node obtained. The only nodes of variable size are

those for identifiers and string constants, and these are constructed using NEWVEC

directly. The size of every other node depends only on its type and is conveniently

constructed with the aid of one of the functions from LIST1 to LIST6 which take

from one to six arguments respectively, specifying the element values of the

created node.

FORMTREE is the main function of the syntax analyser and, as such, its job is to

initialise several variables and data structures that are used during syntax analysis.

It starts by initialising the character input interface by allocating space for the

circular buffer CHBUF, initialising certain counts and making the first call of RCH.

If the input stream is exhausted at this stage, FORMTREE returns a value zero to the

steering program to indicate that there are no more sections of source code to be

compiled. Space is allocated for the vector GETV for use by PIJRFORMGET for the

implementation of the get-directive. The vectors WORDV and CHARV are then

allocated for use by NEXTSYMB and L00KUPW0RD for the analysis of variable

length symbols. Finally the name table is allocated and initialised with entries for

all the reserved words with the aid of DECLSYSWORDS as described above.

The lexical and syntax analyser 101

424

425 AND LIST2(X, Y) = VALOF

426 $(LET P = NEWVEC(l)

427 P! 0, P! 1 := X, Y

428 RESULTIS P $)

429

430 AND LIST3(X, Y, Z) = VALOF

431 $(LET P = NEWVEC(2)

432 P!0, P!1, P!2 := X, Y, Z

433 RESULTIS P $)

434

435 AND LIST4(X, Y, Z, T) = VALOF

436 $(LET P = NEWVEC(3)

437 P! 0, P!1, P!2, P!3 := X, Y, Z, T

438 RESULTIS P $)

439

440 AND LIST5(X, Y, Z, T, U) = VALOF

441 $(LET P = NEWVEC(4)

442 P!0, P!1, P!2, P!3, P!4 := X, Y, Z, T, U

443 RESULTIS P $)

444

445 AND LIST6(X, Y, Z, T, U, V) = VALOF

446 $(LET P = NEWVEC(5)

447 P!0, P!l, P! 2, P!3, P!4, P!5 := X, Y, Z, T, U, V

448 RESULTIS P $)

449

450 AND FORMTREE() = VALOF

451 $(1 LET V = VEC 63

452, CHBUF := V

453 FOR I = 0 TO 63 DO CHBUF!I := 0

464 CHCOUNT :=0

455 LINECOUNT, PRLINE 1, 0

456 RCH()

457 IF CH=ENDSTREAMCH RESULTIS 0

458

459 $(LET V = VEC 20 // for get-streams

460 GETV, GETP, GETT := V, 0, 20

461

462 $(LET V = VEC 128

463 WORDV := V

464

465 $(LET V = VEC 256

466 CHARV, CHARP := V, 0

102 The lexical and syntax analyser

The variables REC. P and REC. L are used in SYNREPORT in the code dealing

with the recovery after syntax errors. They must therefore be initialised before the

first call of NEXTSYMB. At this point there is a compiler debugging option built into

the program to assist implemented who are bootstrapping the compiler. It is

controlled by OPTION! 1 which is set by the steering program. When it is set, the

compiler does not perform syntax analysis but executes a simple loop that prints

the integer code for each basic symbol of the source program together with the

characters held in WORDV. A section of BCPL program is syntactically equivalent to

a block body and so is read by the function RDBLOCKBODY described later.

FORMTREE is typical of a kind of function, which occurs quite often in large

BCPL programs, to initialise variables and allocate workspace before calling the

procedure that does the work. Such a sequence of initialising statements is

structurally simple but none-the-less important since forgetting to initialise a

variable can lead to obscure runtime errors. Using tagged section brackets to close

more than one section is not normally recommended, but the use of $) 1 at the end

of FORMTREE to close six sections is perfectly satisfactory since the logical structure

of this function is so simple.

When a syntactic error is detected, the routine SYNREPORT is called with an

integer argument specifying the nature of the error. This routine prints a suitable

message giving the approximate line number of the error and the current

contents of the circular buffer. Unless too many errors have already been

detected, SYNREPORT tries to resume syntax analysis at a sensible place. It first

reads in basic symbols until the end of the current line is reached, or LET, AND

or a section bracket is found, and then makes a non-local jump by the call

LONG JUMP (.REC. P, REC.L) to the current recovery point.

The lexical and syntax analyser 103

467

468 $(LET V = VEC NAMETABLESIZE

469 NAMETABLE := V

470 FOE I = 0 TO NAMETABLESIZE DO NAMETABLE!I := 0

471 DECLSYSWORDS()

472

473 REC.P, EEC.L := LEVEL(), L

474

475 L: NEXTSYMBQ

476

477 IF OPTION!! DO // LEX debugging option

478 $(WEITEF("^I3 ??S*N" , SYMB, WOBDV)

479 IF SYMB=S.END RESULTIS 0

480 GOTO L $)

481

482 $(LET A = RDBL0CKB0DY()

483 UNLESS SYMB=S.END DO SYNREPORT(99)

484

485 RESULTIS A $)1

486

487

488

489 AND SYNEEPORT(N, A) BE

490 $(REPOETCOUNT := REPORTCOUNT + 1

491 WRITEF (" *NSYNTAX ERROR NEAR LINE %N: ", LINECOUNT)

492 SYNMESSAGE(N, A)

493 WRCHBUFO

494 IF REPORTCOUNT GR REPOHTMAX DO

495 $(WRITES("*NC0MPILATI0N ABORTED*N")

496 STOP(8) $)

497 NLPENDING := FALSE

498

499 UNTIL SYMB=S.LSECT | SYMB=S.RSECT |

500 SYMB=S.LET | SYMB=S.AND |

501 SYMB=S.END | NLPENDING DO NEXTSYMB()

502 LONGJUMP(REC.P, REC.L) $)

503

504 AND SYNMESSAGE(N, A) BE

505 $(LET S = VALOF SWITCHON N INTO

506 $(DEFAULT: A := N; RESULTIS "ERROR %’S"

507

The lexical and syntax analyser 105

508 CASE 91: RESULTIS OUT OF CONTEXT"

509 CASE 94: RESULTIS "ILLEGAL CHARACTER"

510 CASE 96: RESULTIS "NO INPUT %S"

511 CASE 97: RESULTIS "BAD GET DIRECTIVE"

512 CASE 98: RESULTIS "PROGRAM TOO LARGE"

513 CASE 99: RESULTIS "INCORRECT TERMINATION"

514

515 CASE 8:CASE 40:CASE 43:

516 RESULTIS "NAME EXPECTED"

517 CASE 6: RESULTIS EXPECTED"

518 CASE 7: RESULTIS EXPECTED"

519 CASE 9: RESULTIS "UNTAGGED '$)' MISMATCH"

520 CASE 32: RESULTIS "ERROR IN EXPRESSION"

521 CASE 33: RESULTIS "BAD NUMBER"

522 CASE 34: RESULTIS "BAD STRING OR CHARACTER CONSTANT

523 CASE 15: CASE 19:CASE 41: RESULTIS MISSING"

524 CASE 30: RESULTIS "BAD CONDITIONAL EXPRESSION"

525 CASE 42: RESULTIS "BAD PROCEDURE HEADING"

526 CASE 44:

527 CASE 45: RESULTIS "BAD DECLARATION"

528 CASE 50: RESULTIS "UNEXPECTED

529 CASE 51: RESULTIS "ERROR IN COMMAND"

530 CASE 54: RESULTIS "'ELSE' EXPECTED"

531 CASE 57:

532 CASE 58: RESULTIS "BAD FOR-LOOP"

533 CASE 60: RESULTIS "'INTO' EXPECTED"

534 CASE 61: CASE 62: RESULTIS : 1 EXPECTED"

535 CASE 63: RESULTIS "’**/' MISSING"

536 $)

537

538 WRITEF(S A) $)

539

540

541 .

542 // SYN1

543

544 GET "SYNHDR"

545

546 LET BDBLOCKBODYO = VALOF

547 $(1 LET P, L = REC.P, BEC.L

548 LET A = 0

549

106 The lexical and syntax analyser

6.5 RDBLOCKBODY, RDSEQ, RDCDEFS, and RDSECT

RDBLOCKBODY is the function which performs the analysis of the body of a block

or compound command and yields the corresponding AE tree representation. A

block body is basically a command sequence, possibly preceded by a sequence of

declarations. The kind of a declaration can be determined from its first symbol. If

it is MANIFEST, STATIC or GLOBAL, then the body of the declaration is enclosed in

section brackets and is read by the call RDSECT (RDCDEFS). The function RDSECT

deals with the matching of section brackets, and RDCDEFS is a function which will

read a sequence of constant definitions of the form

<name>=E or <name>:E

Having read the declaration, the block body is read by a call of RDBLOCKBODY and

the appropriate node constructed.

A let-declaration consists of the word LET followed by a sequence of definitions

connected by ANDs. The definitions are read by repeated calls of RDEF while SYMB

has the value S . AND. The rest of the block body is read by a call of RDBLOCKBODY.

The command labelled RECOVER is the main recovery point after syntactic

errors. This label and the current stack pointer (obtained by a call for LEVEL) are

assigned to the global variables REC . L and REC . P for use by SYNREPORT. The old

values of REC. P and REC . L are saved and restored appropriately.

If the block body does not start with a declaration, then it must be a command

sequence and this is read by a call for RDSEQ. Since semicolons are only necessary

to separate commands which would otherwise elide, they may often be omitted

and thus the end of a sequence must be detected by the presence of a closing

section bracket or symbol S .END rather than by the absence of a semicolon. The

call IGN0RE(S. SEMICOLON) ignores semicolons by calling NEXTSYMB if the

current symbol is a semicolon. The commands of the sequence are read in by calls

for RCOM.

The lexical and syntax analyser 107

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584 AND

585

586

587

588

589

590

591

REC.P, REC.L := LEVEL(), RECOVER

IGN0RE(S.SEMICOLON)

SWITCHON SYMB INTO

$(S CASE S.MANIFEST:

CASE S.STATIC:

CASE S.GLOBAL:

$(LET OP = SYMB

NEXTSYMB()

A := RDSECT(RDCDEFS)

A := LIST3(OP, A, RDBLOCKBODY())

ENDCASE $)

CASE S.LET: NEXTSYMB()

A := RDEF()

RECOVER: WHILE SYMB=S.AND DO

$(NEXTSYMBO

A := LIST3(S.AND, A, RDEF()) $

A := LIST3(S.LET, A, RDBLOCKBODY())

ENDCASE

DEFAULT: A := RDSEQ()

UNLESS SYMB=S.RSECT | SYMB=S.END DO

SYNREPORT(51)

CASE S.RSECT: CASE S.END:

$)S

REC.P, REC.L := P, L

RESULTIS A $)1

RDSEQO = VALOF

$(LET A = 0

IGN0RE(S.SEMICOLON)

A := RCOM()

IF SYMB=S.RSECT | SYMB=S.END RESULTIS A

RESULTIS LIST3(S . SEQ, A, RDSEQO) $)

108 The lexical and syntax analyser

The BCPL rule concerning the automatic insertion of closing section brackets is

implemented by the function RDSECT. When RDSECT is called the current symbol

is an opening section bracket whose tag is in a tree node poit ted to by W0RBN0DE.

This pointer is held in the local variable TAG for later comparison with the tag of

the closing bracket. The parameter of RDSECT is a function to analyse the text

between the section brackets. This function will be RDBLOCKBODY, RDCDEFS or

RDSEQ. These functions should read until a closing section bracket is reached.

RDSECT checks for the closing bracket and if one is not found a report is

generated. Its tag is then compared with the tag of the opening section bracket

and NEXTSYMB called if they match. If the tags do not match and if the closing

bracket has a null tag then an error is reported. Notice that, if the tags do not

match and the closing bracket is not null, then NEXTSYMB is not called, leaving

S YMB containing the closing section bracket. This, in effect, inserts an appropriate

closing section bracket for the current level.

The function RNAME is called when a name is expected; it first checks that the

current symbol is a name and then yields as result the value of W0RDN0DE which

will have been set by the call of L00KUPW0RD in the lexical analyser. One should

note that all occurrences of the same name yield pointers to the same node. This

simplifies name comparison in the translation phase of the compiler.

RNAMELIST is a function that reads a list of names separated by commas.

IGNORE and CHECKFOR are routines that are used to facilitate the treatment of

delimiter symbols.

The lexical and syntax analyser 109

592 AND RDCDEFSO = VALOF

593 $(1 LET A, B = 0, 0

594 LET PTR = 3A

595 LET P, L = REC.P, REC.L

596 REC .P, REC.L := LEVEL(), REC

597

598 $(B := RNAME()

599 TEST SYMB=S.EQ | SYMB=S.COLON THEN NEXTSYMB()

600 ELSE SYNREPORT(45)

601 !PTR := LIST4(S.CONSTDEF, 0, B, REXP(0))

602 PTR := SH2!(!PTR)

603 REC: IGN0RE(S.SEMICOLON) $) REPEATWHILE SYMB=S.NAME

604

605 REC.P, REC.L := P, L

606 RESULTIS A $)1

607

608 AND RDSECT(R) = VALOF

609 $(LET TAG, A = WORDNODE, 0

610 CHECKFOR(S.LSECT, 6)

611 A := R()

612 UNLESS SYMB==S . RSECT DO SYNREPORT(7)

613 TEST TAG=WORDNODE

614 THEN NEXTSYMBO

615 ELSE IF WORDNODE=NULLTAG DO

616 $(SYMB := 0

617 SYNREPORT(9) $)

618 RESULTIS A $)

619

620

621 AND RNAMELISTO = VALOF

622 $(LET A = RNAMEQ

623 UNLESS SY1£B=S. COMMA RESULTIS A

624 NEXTSYMB()

625 RESULTIS LIST3(S. COMMA, A, RNAMELISTO) $)

626

627

628 AND RNAME() = VALOF

629 $(LET A = W0RDN0DE

630 CHECKFOR(S.NAME, 8)

631 RESULTIS A $)

632

633 AND IGN0RE(ITEM) BE IF SYMB=ITEM DO NEXTSYMBQ

634

110 Hie lexical and syntax analyser

6.6 The analysis of expressions

Expressions are composed of basic expressions connected by infixed operators.

They are parsed by the two functions BBEXP and BEXP. BBEXP reads a basic

expression and yields as result its AE tree form, and BEXP reads a general

expression and is primarily concerned with the parsing of infixed operators. Both

BBEXP and BEXP are called with the first symbol of the expression in SYMB and on

exit SYMB contains the first symbol following the expression read.

BBEXP switches on SYMB to determine which kind of basic expression is present

and an error message is generated if SYMB cannot start an expression. If the

current symbol is TBUE, FALSE, or a name, then the node pointed to by W0BDN0DE

is the AE tree representation of the basic expression. If the current symbol is a

string, then a node is obtained by a call for NEWVEC and the string copied into it.

The number of words required to hold the string was computed when the lexical

analyser packed the string and it was left in 1OBDSIZE. If the current symbol is a

number, then a suitable number node is constructed using the value in DECVAL. A

left parenthesis introduces a bracketed expression. The enclosed expression is

read by the call BEXP (0) and then the matching parenthesis is checked. The body

of a valof-expression is a command and this is read by a call for BOOM. The

remaining cases in BBEXP are monadic expression operators of various binding

powers. The operands are read in by suitable calls of BEXP. If the operand of

monadic minus is a number then its numerical value is negated.

The lexical and syntax analyser 111

635 AND CHECKFOE(ITEM, N) BE

636 $(UNLESS SYMB=ITEM DO SYNREPORT(N)

637 NEXTSYMBO $)

638

639 .

640 // SYN2

641

642 GET "SYNHDR"

643

644 LET RBEXP() = VALOF

645 $(1 LET A, OP = 0, SYMB

646

647 SWITCHON SYMB INTO

648

649 $(DEFAULT: SYNREPORT(32)

650

651 CASE S.TRUE:

652 CASE S.FALSE:

653 CASE S.NAME:

654 A := WORDNODE

655 NEXTSYMBO

656 RESULTIS A

657

658 CASE S.STRING:

659 A := NEWVEC(WORDSIZE+1)

660 A!0 := S.STRING

661 FOR I = 0 TO WORDSIZE DO A!(I+1) := WORDY!I

662 NEXTSYMBO

663 RESULTIS A

664

665 CASE S.NUMBER:

666 A := LIST2(S.NUMBER, DECVAL)

667 NEXTSYMBO

668 RESULTIS A

669

670 CASE S.LPAREN:

671 NEXTSYMBO

672 A := REXP(0)

673 CHECKFOR(S.RPAREN, 15)

674 RESULTIS A

675

676 CASE S.VALOF:

677 NEXTSYMBO

678 RESULTIS LIST2(S.VALOF, RCOM()))

112 The lexical and syntax analyser

EEXP is the function that parses a general arithmetic expression. The left- and

right-hand precedence of operators control the analysis. The right-hand operand

of any operator is read by a call for EEXP with the operator’s right-hand

precedence as argument. On entry, it uses EBEXP to read the basic expression that

starts the general expression and then switches on the symbol that follows. If this

symbol is not an infixed operator, then the entire expression has been read and

EEXP returns. If the symbol is a left parenthesis then a function application has

been encountered and it is parsed by reading in the actual parameters, if any, and

then checking for the right parenthesis. Every other infixed operator has its left

precedence checked with the formal parameter of EEXP to determine whether it

may be incorporated into the result. If the test succeeds, then the right-hand

operand is read by a call of EEXP using the operator’s right-hand precedence.

Within the program the operator’s left and right precedence values are usually

held in the local variables P and Q respectively and the parsing is performed by the

statements labelled DYADIC on line 759.

N is the formal parameter of EEXP, OP is the operator and A is a local variable

which holds the AE tree form of the expression to the left of the operator. For left

associative operators, the left and right precedences are equal; such operators are

parsed by setting P and then jumping to LASSOC where Q is set equal to P before

executing the statement labelled DYADIC. After reading the right hand operand

and constructing a suitable tree node, EEXP executes the switch again and the

process is repeated until either there are no more infixed operators or one is

encountered with insufficient left precedence.

The lexical and syntax analyser 113

679

680 CASE S.VECAP: OP := S.RY

681 CASE S.LV:

682 CASE S.RY: NEXTSYMBO; RESULTIS LIST2(0P, REXP(35))

683

684 CASE S .PLUS: NEXTSYMBO; RESULTIS REXP(34)

685

686 CASE S.MINUS: NEXTSYMBO

687 A := REXP(34)

688 TEST HI!A=S.NUMBER

689 THEN H2!A := - H2!A

690 ELSE A := LIST2(S.NEG, A)

691 RESULTIS A

692

693 CASE S .NOT: NEXTSYMBO

694 RESULTIS LIST2(S.NOT, REXP(24))

695

696 CASE S.TABLE:NEXTSYMBO

697 RESULTIS LIST2(S.TABLE, REXPLISTO) $)1

698

699

700 AND REXP(N) = VALOF

701 $(1 LET A = RBEXPO

702

703 LET B, C, P, Q = 0, 0, 0, 0

704

705 $(2 LET OP = SYMB

706

707 IF NLPENDING RESULTIS A

708

709 SWITCHON OP INTO

710 $(S

711 DEFAULT: RESULTIS A

712

713 CASE S.LPAREN: NEXTSYMBO

714 B := 0

715 UNLESS SYMB=S.RPAREN DO B := REXPLISTO

716 CHECKFOR(S.RPAREN, 19)

717 A := LIST3(S.FNAP, A, B)

718 LOOP

719

114 The lexical and syntax analyser

The parsing of relational operators is special since they are non-associative and

since the logical operator ‘and’ needs to be inserted between the individual

relations of an extended relation. The conditional expression is also exceptional

since it has two right-hand operands separated by a comma.

BCPL allows the programmer to omit the semicolons that separate commands

in most instances and, in particular, between commands which are on different

lines. To ensure that this will always work, the language states that a dyadic

operator may not be the first symbol of a line. This is implemented by inspecting

NLPEN'DIN'G before executing the switch in REXP. NLPENDING is set in NEXTSYMB

as described above.

The lexical and syntax analyser 115

720 CASE S.VECAP: P := 40; GOTO LASSOC

721

722 CASE S.REM:CASE S.MULT:CASE S.DIV: P := 35; GOTO LASSOC

723

724 CASE S.PLUS:CASE S.MINUS: P := 34; GOTO LASSOC

725

726 CASE S.EQ:CASE S.NE:

727 CASE S.LE:CASE S.GE:

728 CASE S.LS:CASE S.GR:

729 IF N>=30 RESULTIS A

730

731 $(R NEXTSYMBO

732 B := REXP(30)

733 A := LIST3(OP, A, B)

734 TEST C=0 THEN C := A

735 ELSE C := LIST3(S.LOGAND, C, A)

736 A, OP := B, SYMB $)R REPEATWHILE S.EQ<=OP<=S.GE

737

738 A := C

739 LOOP

740

741 CASE S.LSHIFT:CASE S.RSHIFT: P, Q := 25, 30; GOTO DYADIC

742

743 CASE S.LOGAND: P := 23; GOTO LASSOC

744

745 CASE S.LOGOR: P := 22; GOTO LASSOC

746

747 CASE S.EQV:CASE S.NEQV: P := 21; GOTO LASSOC

748

749 CASE S.COND:

750 IF N>=13 RESULTIS A

751 NEXTSYMBO

752 B := REXP(0)

753 CHECKFOR(S.COMMA,.30)

754 A := LIST4(S.COND, A, B, BEXP(0))

755 LOOP

756

757 LASSOC: Q := P

758

759 DYADIC: IF N>=P RESULTIS A

116 The lexical and syntax analyser

6.7 The analysis of definitions

The function RDEF is called after encountering the basic symbol LET or AND to

read the definition. There are four forms of definition in BCPL: function

definitions, routine definitions, simple definitions and vector definitions. They all

start with a name, and a simple definition may start with a name list. The name or

name list is read in by a call for RNAMELIST and its tree form held in the local

variable N. The symbol that follows should either be a left parenthesis indicating

the presence of a function or routine definition or an equals sign indicating a

simple or vector definition.

For a function or routine definition, a check is made to ensure that N is a name

(not a name list) and then the formal parameter list is read. The defining operator,

which should be either the word BE or an equals sign, distinguishes between the

two possible kinds of definition.

The body of a routine is a command read by RCOM and the body of a function is

an expression read by REXP. The fifth element of the AE node for function and

routine definitions is working space used by the next stage of the compiler.

Simple and vector definitions are distinguished by the symbol that follows the

equals sign. If it is VEC then a vector definition has been encountered, and it is

necessary to check that N is a name.

The lexical and syntax analyser 117

760

761

762

763 $)S

764 $)2

765 $)1

766

767 LET

768

769

770

771

772

773

774

775

776

777

778

779 LET

780 $(1

781

782

783

784 $(

785 $(

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

NEXTSYMB()

A := LIST3(OP, A, REXP(Q))

LOOP

REPEAT

REXPLISTO = VALOF

$(1 LET A = 0

LET PTR = 3A

$(LET B = REXP(0)

UNLESS SYMB=S.COMMA DO $(!PTR := B

RESULTIS A $)

NEXTSYMB()

!PTR := LIST3(S.COMMA, B, 0)

PTR := SH3!(!PTR) $) REPEAT

$)1

RDEF() = VALOF

LET N = RNAMELISTO

SWITCHON SYMB INTO

CASE S.LPAREN:

LET A = 0

NEXTSYMB()

UNLESS HI!N=S.NAME DO SYNREPORT(40)

IF SYMB=S.NAME DO A := RNAMELISTO

CHECKFOR(S.RPAREN, 41)

IF SYMB=S.BE DO

$(NEXTSYMBO

RESULTIS LIST5(S.RTDEF, N, A, RCOM() , 0) $)

IF SYMB=S.EQ DO

$(NEXTSYMBO

RESULTIS LIST5(S.FNDEF, N, A, REXP(0) , 0) $)

SYNREPORT(42) $)

118 The lexical and syntax analyser

6.8 The analysis of commands

Commands are parsed by the functions EBCOM and ECOM. The process used is

similar to that used in the parsing of expressions, only, since there are so few

infixed command operators, it is not necessary to use precedence. EBCOM parses

basic commands and ECOM analyses general commands.

The kind of basic command is determined by its first symbol in all but three

cases, which are assignments, routine commands and labelled commands. These

three can be distinguished by reading in an expression and then looking at the

symbol that follows. If it is the assignment operator, then the right-hand side is

read and an assignment node is constructed. If the symbol is a colon, a check is

made to ensure that the expression read was a name and then a labelled-command

node is constructed. The fourth element in this node is used as working space by

the next phase of the compiler. If the symbol is anything else, then a routine

command must have been encountered. It would have been parsed as a function

application by EEXP; the node is checked and, if correct, is converted into a

routine application node.

The lexical and syntax analyser 119

801 DEFAULT: SYNREPORT(44)

802

803 CASE S.EQ:

804 NEXTSYMBO

805 IF SYMB=S.VEC DO

806 $(NEXTSYMBO

80V UNLESS HI!N=S.NAME DO SYNREPORT(43)

808 RESULTIS LIST3(8.VECDEF, N, REXP(0)) $)

809 RESULTIS LIST3(S.VALDEF, N, REXPLIST())

810 $) $)1

811 .

812 // SYN4

813

814 GET "SYNHDR"

815

816 LET RBCOM() = VALOF

817 $(1 LET A, B, OP = 0, 0, SYMB

818

819

820

821

822

823

825

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

SWITCHON SYMB INTO

$(DEFAULT: RESULTIS 0

CASE S.NAME:CASE S.NUMBER:CASE S.STRING:

CASE S.TRUE:CASE S.FALSE:

CASE S.LV:CASE S.RV:CASE S.VECAP:

CASE S.LPAREN:

A := REXPLISTO

IF SYMB=S.ASS THEN

$(OP := SYMB

NEXTSYMBO

RESULTIS LIST3(OP, A, REXPLISTO) $)

IF SYMB=S.COLON THEN

$(UNLESS HI!A=S.NAME DO SYNREPORT(50)

NEXTSYMB()

RESULTIS LIST4(S.COLON, A, RBCOM(), 0)

IF HI! A=S . FNAP THEN

$(HI!A := S.RTAP

RESULTIS A $)

$)

120 The lexical and syntax analyser

All other forms of command are determined by the first symbol and they are

parsed in a straightforward way. Delimiting symbols which must be present are

checked by suitable calls of CHECKFOR and the optional occurrences of DO are

dealt with by the call IGN0RE(S . DO). If the command starts with a section bracket

then it is a block or compound command, and is read by a call for RDSECT which

implements the section bracket tagging rule. Its argument RDBLOCKBODY is a

function which reads the text between the section brackets. The AE form of the

basic commands LOOP, BREAK, ENDCASE, FINISH, and RETURN is the node in the

name tree pointed to by WORDNODE.

The lexical and syntax analyser 121

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

SYNREPORT(51)

RESULTIS A

CASE S.GOTO:CASE S.RESULTIS:

NEXTSYMB()

RESULTIS LIST2(0P, REXP(0))

CASE S.IF:CASE S.UNLESS:

CASE S.WHILE:CASE S.UNTIL:

NEXTSYMB()

A := REXP(0)

IGNORE(S.DO)

RESULTIS LIST3(0P, A, RCOM())

CASE S.TEST:

NEXTSYMB()

A := REXP(0)

IGNORE(S.DO)

B := RCOM()

CHECKFOR(S.OR, 54)

RESULTIS LIST4(S.TEST, A, B, RCOM())

CASE S.FOR:

$(LET I, J, K = 0, 0, 0

NEXTSYMB()

A := RNAME()

CHECKFOR(S.EQ, 57)

I := REXP(0)

CHECKFOR(S.TO, 58)

J := REXP(0)

IF SYMB=S.BY DO $(NEXTSYMB()

K := REXP(0) $)

IGNORE(S.DO)

RESULTIS LIST6(S.FOR, A, I, J, K, RCOM()) $)

CASE S.LOOP:CASE S.BREAK:

CASE S.RETURN:CASE S.FINISH:CASE S.ENDCASE:

A := WORDNODE

NEXTSYMB()

RESULTIS A

122 The lexical and syntax analyser

RCOM uses RBCOM to read the basic command; it then checks for occurrences of

REPEAT, REPEATWHILE and REPEATUNTIL and constructs suitable repeat nodes

as necessary. RBCOM is prepared to read an empty command, but RCOM checks that

the command is not null. Empty commands may only appear after labels.

Exercises

1. List all the changes needed to the syntax analyser described in this chapter in

order to deal with a new operator called ABS whose precedence is the same as

monadic minus, and also the operator % described in section 4.9.

2. List the changes needed to implement the field-selector extension described

in section 4.8.

3. List the changes that would be necessary to implement operators of the form

<op>:= where <op> may be any dyadic arithmetic or bit-pattern operator. No

space is permitted between <op> and :=. These new operators should behave

syntactically just like :=.

The lexical and syntax analyser 123

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902 $)1

903

904 AND

905 $(1

906

907

908

909

910

911

912

913

914

915

916

917

918 $)1

CASE S.SWITCHON:

NEXTSYMB()

A := REXP(0)

CHECKFOR(S.INTO, 60)

RESULTIS LIST3(S.SWITCHON, A, RDSECT(RDSEQ))

CASE S.CASE:

NEXTSYMB()

A := REXP(0)

CHECKFOR(S.COLON, 61)

RESULTIS LIST3(S.CASE, A, RBCOM())

CASE S.DEFAULT:

NEXTSYMB()

CHECKFOR(S.COLON, 62)

RESULTIS LIST2(S.DEFAULT, RBCOMO)

CASE S.LSECT:

RESULTIS RDSECT(RDBLOCKBODY)

RCOM() = VALOF

LET A = RBCOM()

IF A=0 DO SYNREPORT(51)

WHILE SYMB=S.REPEAT | SYMB=S.REPEATWHILE |

SYMB=S.REPEATUNTIL DO

$(LET OP = SYMB

NEXTSYMB()

TEST OP=S.REPEAT

THEN A := LIST2(OP, A)

ELSE A := LIST3(0P, A, REXP(0)) $)

RESULTIS A

7

Compiler portability

7.1 Introduction

It is possible to construct a portable program in various ways by using, for

instance, a standard language such as Fortran, or by writing the program in some

suitable macro language. Another approach that is sometimes worthwhile is to use

a non-standard but particularly suitable language, even though this may mean

transferring its compiler to the target machine before transferring the application

program. At first sight this seems to be an expensive way to proceed, but there are

compensating advantages. For instance, compared with a macro code, a high-level

language is, in general, easier to program since its syntax can be less restrictive and

it can gain greater linguistic power by greater use of syntactic and semantic

context. A compiler is usually able to generate code several times faster than a

macro generator and this is important if the application program is large and if

much rewriting or continued program development is expected on the target

machine. The efficiency of the object code generated by a compiler is often better

than that produced by macro generators, and the intelligibility of diagnostics

messages can also be better.

A compiler is inherently a machine-dependent program since the part of it

concerned with code generation must be rewritten for every different machine. A

compiler also tends to be large, and large programs by their nature are less

portable than small ones. However, if the language and its compiler are both

designed with care, the work involved to transfer the implementation from one

machine to another can be minimised. Such portability considerations have had a

strong influence on the design of BCPL and its compiler.

While the code generation part of a compiler is machine dependent, the rest can

be written in such a way that only minimal changes are required when moving it to

a new machine. It is normal to separate the machine dependent and independent

parts so that the changes can be localised in a smaller area. To achieve this, the

BCPL compiler is structured as in figure 7.1, where the syntactic phase is largely

machine independent while the code generator is not.

The choice of a suitable intermediate form was one of the key decisions in the

design of the compiler since it affected the level of portability and efficiency

obtainable. Many significantly different forms of interface were considered. It

124

Compiler portability 125

Fig. 7.1 The structure of the BCPL compiler

could have been either a set of procedure calls for the syntactic phase to make on

the code generator, or a data structure (such as a parse tree) to be handed to the

code generator for compilation, or a partially compiled translation of the program

in the form of a linear sequence of statements in some intermediate object code.

The choice is, of course, a compromise. On the one hand, an intermediate code

might have been chosen that was reasonably close to the machine language of a

typical target computer, in which case the code generation would be relatively

simple since most of the translation decisions would by that time have been made.

Alternatively, the interface could have been much closer to the original source

language giving the code generator much greater scope for global and local

optimisation.

One important consideration is that the transporting process is usually based on

the interface code and so one must ensure that it can be written to magnetic tape

and read without undue difficulty. Bearing in mind the immense difficulty that

people often experience with tape when transferring alphanumeric card images,

one should not underestimate the difficulty of transferring anything more

complicated (such as re-entrant list structures of mixed binary and character data).

One should also remember that the installer is usually far less familiar with the

compiler design and its intermediate code than the donor of the system. Indeed

the installer may spend more time trying to understand the compiler and the

interface than the time he eventually needs to write a code generator.

In practice the interface in most existing portable compilers is usually in the

form of a linear sequence of simple statements in some intermediate code

specifically designed for each language, even though greater compiled code

efficiency can be obtained by using a more structured interface.

7.2 OCODE

The intermediate form for BCPL is called OCODE, and follows this pattern. It is

described in full in Richards [11], It can be regarded as the assembly language of a

simple abstract machine for BCPL. This machine has a store for variables

consisting of equal-sized cells which can be addressed using integers in such a way

that consecutive integers refer to adjacent cells. This store is subdivided into three

126 Compiler portability

areas: a vector for global variables; an area for static variables; and the stack for

local variables, arguments and anonymous results. The machine contains two

registers used for addressing: G which points to the base of the global vector; and P

which points to the region of stack belonging to the currently active procedure.

To aid description, there is a variable S which holds the size of the current stack

frame. Its value varies dynamically during execution as blocks are entered and

left, but no central register need be provided for it since its value is always known

at every point in the program. Many of the basic operations in the machine are

concerned with loading, storing or modifying values on or near the top of the

stack, and we will use P! (S-l) and P!(S-2) to denote the top two locations of

the current stack frame. This notation is shown pictorially in figure 7.2.

Current stack frame

P!(S-2)p;(S-l)

t*

Fig. 7.2 The runtime stack

IText free

stack cell

Previous stack frames

Static variables are allocated storage cells that are addressed by internal

symbolic labels of the form Ln where n is an integer.

An OCODE statement consists of a keyword identifying the statement followed

by a variable number of simple arguments. Most of these statements are seman¬

tically weak but sequences of them can easily be .used to form the reverse Polish

translation of a BCPL program.

Access to local variables is provided by three statements which can be specified

as follows:

LP n means S:=S+1; P!(S-l):=P!n

LLP n means S:=S+1; P!(S-l):=P+n

SP n means P!n:=P!(S-l); S:=S-1

Similarly there are three statements (LG, LLG and SG) that provide access to global

variables and three (LL, LLL and SL) that provide access to static ones.

Numerical constants may be loaded using LN which is defined as follows:

LNk means S:=S+11 P! (S-l):=k

Compiler portability 127

The statement

LSTR k Cl C2 . . . Ck

will load onto the stack a value which represents the string composed of the

characters whose integer codes are Cl to Ck.

The statements TRUE and FALSE load the corresponding truth values onto the

stack.

Each expression operator replaces its operands, taken from the top of the stack,

by its result. For instance, MULT is defined as follows:

MULT means P’ (S-2) := P! (S-2)*P! (S-l) ; S: =S-1

Sixteen other dyadic expression operators are defined similarly. These are the

integer operators DIV, HEM, PLUS and MINUS, the relational operators EQ, NE, LS,

GR, LE and GE, and the logical (or bit-pattern) operators LSHIFT, RSHIFT,

LOGAND,LOGOR,EQV and NEQV.

There are three monadic expression operators defined as follows:

NEG means P! (S— 1) : = —P! (S— 1)

NOT means P! (S-l) := NOT P! (S-l)

RV means P!(S-l) := !(P!(S-l))

Assignments to simple variables may already be translated using SP, SG and SL

defined above; however, a statement is required for indirect assignments, defined

as follows:

STIND means !(P!(S-l)) : = P!(S-2); S:=S-2

Conditional commands in BCPL require corresponding conditional statements

in OCODE. These are JT Ln and JF Ln which cause the program to jump

conditionally to the label Ln depending on whether the top item of stack

represents true or false. The label is set by the statement LAB Ln at the appropriate

place in the program. Unconditional jumps are compiled into JUMP or GOTO

which are defined as follows:

JUMP Ln means GOTO Ln

GOTO means S:=S-1; GOTO P! S

Occasionally it is necessary for the first phase of the compiler to tell the code

generator where the top of the stack is, relative to P. This happens, for instance,

when vectors are declared, or at the end of blocks. The OCODE statement to pass

this information is STACK k, and its effect is to set S in the code generator to the

128 Compiler portability

value k. A second directive, STORE, is provided so that the first phase of the

compiler can indicate the point dividing the declarations at the head of a block

from the body that follows. Its effect is to cause the code generator to compile code

to standardise the runtime state of the machine so that all stacked items are

physically held in their appropriate store locations rather than being held in

central processor registers. Without such a directive it would be difficult for an

optimising code generator to know when stacked items could be held safely in

machine registers.

The other OCODE statements relating to commands are SWITCHON, RES,

RSTACK and FINISH, but these will not be described here.

The mechanism for procedure calls and the passing of parameters requires

special care since there is such diversity in the instructions available on different

machines for subroutine jumps. Efficient coding of these calls is particularly

important since they occur frequently. For instance, in the BCPL compiler for the

IBM 370 there are 1370 procedure calls in 23 000 words of compiled code. At the

moment when control is about to be transferred to the called procedure, the

runtime stack has the form shown in figure 7.3.

Stack frame for the Space for

current procedure link Actual parameters

t*— -4
P Base of new

stack frame

Fig. 7.3 The stack at the moment of call

The distance between the old and new stack frame pointers is a constant k which

the compiler can determine for each call, being only dependent on the number of

local variables and anonymous results that exist at the time. Since the parameters

are always called by value, they can be evaluated and placed on the stack. Similarly

the procedure entry point F is itself placed on the stack. The actual procedure call

is made using FNAP k or RTAP k depending on whether the procedure should

produce a result or not.

The entry point of the procedure is marked by the statement

ENTRY k Ln Cl C2 . . . Ck

where Ln is the symbolic label for the entry point and Cl to Ck are the characters

of the name of the procedure. The ENTRY statement is immediately followed by a

SAVE statement whose argument indicates the number of formal parameters the

Compiler portability 129

procedure has. The return from a procedure is caused by RTRN if there is no

result, and by FNRN if there is a result to be returned.

These six statements allow the code generator writer considerable freedom in

the design of the calling sequence for any particular machine. For instance, it is

not difficult to generate code in which the first few arguments of a call are passed

in central registers, which is a strategy well worth adopting for many reasons.

Static variables in BCPL are allocated storage cells at compile-time, using the

ITEMN and ITEML statements. ITEMN k will allocate a static cell, giving it the initial

value k where k is an integer, and ITEML Ln will allocate a static cell, giving it an

initial value which represents the point in the program labelled Ln. Such static

cells are themselves addressed by symbolic labels, which may be set by using the

statement DATALAB Ln immediately preceding the corresponding ITEMN or

ITEML statement.

The statement GLOBAL n globl labl . • . globn labn causes the n global

locations globl to globn to be initialised to values representing points in the

program labelled labl to labn.

7.2.1 Example

As an example, the OCODE translation of the following program

GLOBAL $(START:1; WRITEF:76 $)

LET START() BE

$(LET F(N) = N = 0 -> 1, N*F(N-1)

FOR I = 1 TO 10 DO WRITEF("F(*N) = /=N*N", I, F(I))

$)

is

STACK 2

JUMP L2

ENTRY 5 LI 83 84 65 82 84 SAFE 2

DATALAB L4 ITEML L3

JUMP L5

ENTRY 1 L3 70 SAVE 3

LN 0 LP 2 EQ JF L7

LN 1 JUMP L6

STACK 3

LAB L7 STACK 5

LP 2 LN 1 MINUS LL L4 FNAP 3

LP 2 MULT

LAB L6

jump round the body of START

entry to START

allocate cell for F

jump round the body of F

entry to F

test if N=0

then load 1 else

F(N-l)

multiplied by N

130 Compiler portability

FRRR

STACK 2

LAB L5 STORE

LR 1 STORE JUMP L8

LAB L9 STACK 5

LSTR 11 70 40 37 78 41

32 61 32 37 78 10

LP 2

STACK 9 LP 2 LL L4 FRAP 7

LG 76 RTAP 3

LP 2 LR 1 PLUS SP 2

LAB L8

LP 2 LR 10 LE JT L9

STACK 2

RTRR

STACK 2

LAB L2 STORE

GLOBAL 1

1 LI

return with result

end of declarations

initialise the for-loop

load arguments of WRITEF

load the string

"F(%R) = %R*R"

load I

call F(I)

call WRITEF

increment I

loop again if I<=10

exit from START

initialise the global for START

7.3 The code generator

As has been seen, OCODE statements are simple and it is clear that code of

reasonable quality could not be generated by translating only one OCODE

statement at a time. Although it is impractical for the code generator to perform

global flow analysis, there are other areas of optimisation that are possible. It can,

for instance, perform local optimisation of register allocation and the selection of

machine instructions. Considerable benefit may be gained from a carefully chosen

global organisation. This includes the way that global and local variables are

accessed, together with the details of the calling sequence, particularly the way in

which registers are used to pass information to and from a called procedure. It is,

for instance, well worthwhile to place the first few arguments in central registers of

the machine if possible, and it is also a good idea to hold the result of a function call

in the same register that is used for the first argument. Even on machines with

many central registers it has been found to be a good strategy to re-use the

arguments registers to hold anonymous results during expression evaluation.

In order to perform the local optimisation, the code generator uses a simulated

model of the state of the computation in the target machine. This model varies in

complexity depending upon the level of optimisation desired. For many BCPL

code generators, the model consists solely of a simulation of the runtime stack in

which each item in the model represents an item held in the runtime stack. The

possible values that can be simulated by these items usually include constants,

Compiler portability 131

simple variables and values held in central registers, and it is often possible to

represent the addition of an integer constant and one level of indirection. This

degree of simulation allows the code generator to produce respectable code, but

still remain relatively simple. In fact many code generators share much of the

program concerned with the input of OCODE and the simulation of the abstract

machine, and so when embarking on a new BCPL implementation it is well

worthwhile taking as a basis an already existing code generator for a similar

machine.

We now describe some details of a typical code generator, with specific

reference to one that was implemented for the XDS Sigma 7 (a 32-bit word-

addressed multi-register machine). This code generator reads in each OCODE

statement one at a time. If possible it just updates the simulated stack to represent

the state of the computation after each statement, but if this is not possible it

compiles some code in order to simplify the simulated model. Consider, for

example, the translation of the BCPL statement

X := V!2

With suitable declarations of X and V the OCODE translation might be

LN 2

LG 100

PLUS

RV

SP 3

load the constant 2

and load V

add these values together

indirect one level

store the result in X

At the time when the code generator reads the PLUS statement, the top two items

of the simulated stack hold elements representing the constant 2 and the

hundredth global variable. The result of the PLUS operation can be accom¬

modated in the model since the addition of a constant is provided for. Since

indirection is also available, an item representing the entire expression V! 2 is on

top of the simulated stack at the time the SP statement is encountered.

Up to this point, no output has been produced. However, the SP statement

necessitates the generation of some code. The code generator first checks whether

optimisation is possible. For instance, if the top item of the simulated stack

represents X+1 then it would be able to compile the BCPL statement into a single

machine instruction. However, in this case it is not possible and the general

assignment strategy is to compile a statement of the form

STW, r 3,P

where r is some general register holding the value of the right-hand side of the

assignment, and 3, P is the machine-code address of X. Before this instruction can

132 Compiler portability

be compiled, a suitable value of r must be chosen and code compiled to move the

top item of the stack into it. This code is generated by the function call

MOVETOANYCR(ARG1), where ARG1 points to the item in the model representing

the topmost element of the stack. This function inspects ARG1 to see if it

represents one of the constants that are permanently held in central registers, but

if this is not the case it calls the function 8i0VET0ANYR(ARG1) to select a

non-constant general register and to compile code to move ARG1 into it. If ARG1

represents a value that already involves a register, then that register is chosen,

otherwise it selects a register that is free (as described below). Code to move ARG1

into this register is generated by the call MOVETOR(ARG1, r) which inspects ARG1

for optimisable special cases while also providing an adequate translation for all

other cases.

By the algorithm just described, the code compiled for the statement X : = V! 2

on the Sigma 7 is as follows:

LW,R4 100,G load V into R4

LW,R4 2,R4 load Y! 2 into R4

STW,R4 3,P store it in X

When a general register is required, as it was in MOVETOANYR, the allocation is

performed by a function called NEXTR. The strategy is to test the registers in fixed

sequence and to select the first one that is free. This test involves searching all the

items in the simulated stack but, since this is usually small, the cost is not great. If

no register is available, then one is obtained by compiling code to dump a

simulated stack item into store. The item that is chosen is as far as possible from

the free end of the stack. This is a reasonable algorithm for register allocation and

it has the merit that it does not tamper with the top two items of the stack which is

important if we wish to keep the logic of the code generator simple.

Some BCPL code generators implement a simulation of the central registers in

addition to the simulated stack. This allows optimisation of register use between

statements such as one might expect in the compilation of

A := B

C := B

For example, on the IBM 370 implementation of BCPL this simulation is fairly

complete and requires several pages of code for its implementation. However,

effective optimisation of this sort is possible even with an extremely simple model.

Again the Sigma 7 implementation is used as an example. The contents of only

one register is simulated at any time using the variables SLAVEREG, SLAVEK and

SLAVEN. The only values that can be represented in this model are simple

variables. SLAVEREG gives the number of the machine register that currently

holds the value of the variable, SLAVEK indicates whether the variable is local,

Compiler portability 133

global or static and SLAVEN is used to specify the corresponding relative address

or label number. Whenever code is compiled that moves a simple variable into a

register, the slave is updated. If the slave is empty when an assignment to a simple

variable is made, the slave is updated appropriately and whenever code is

compiled that invalidates the contents of the slave its contents are cleared. This

may, for instance, be necessary after the compilation of an arithmetic instruction

or an assignment to a simple variable. The slave must always be cleared on an

indirect assignment since this can update any variable in store.

7.4 The bootstrapping process and INTCODE

In order to transfer BCPL to a new machine, it is necessary to write a new code

generator for it. This can sometimes be written in BCPL and debugged on the

donor machine. If this method is chosen it is usually best to generate assembly

language which is then assembled and tested on the target machine. It is wise to

defer most of the optimisation, since it complicates the code generator and

increases the number of bugs, many of which will not be discovered until the

compiled code is being tested on the target machine.

More often the installer has no access to the donor machine, and he must then

resort to bootstrapping the compiler from a kit. The BCPL kit originally consisted

of the source and OCODE forms of the compiler. However, the currently

preferred approach is to use a different intermediate code specifically designed

for the bootstrapping operation. This code is called INTCODE and is a compact

and extremely simple assembly code. Typically it is possible to implement an

INTCODE assembler and interpreter in less than one week.

Its purpose is to allow the installer to construct a temporary interpretive

implementation on the target machine in the minimum time. This gives him the

chance to learn the language and its compiler painlessly and allows him to write

and debug the production code generator at his own installation. This method has

been used many times and works well.

7.4.1 The INTCODE machine

The INTCODE machine has a store consisting of equal-sized locations addressed

by consecutive integers. All INTCODE instructions have single and double length

forms. The decision to use a double-length instruction depends partially upon the

chosen field sizes, and is made by the INTCODE assembler. The central registers

of the machine are as follows:

A, B: the accumulator and auxiliary accumulator,

C: the control register giving the location of the next instruction to be

executed, —

134 Compiler portability

D: the address register, used to hold the effective address of an instruction,

P: a pointer used to address the current stack frame, and

G: a pointer used to address the global vector.

The format of an instruction comprises six fields as follows:

Function part:

Address field:

D bit:

P bit:

Gbit:

I bit:

this is a three-bit field specifying one of the eight possible

machine functions described below,

this is a field holding a positive integer which is the initial value

of D,

a single bit which, when set, specifies that the initial value of D is to

be taken from the following word,

a single bit to specify whether P is to be added into D at the second

stage of address evaluation,

a single bit to specify whether G is to be added into D at the third

stage of address evaluation, and

this is the indirection bit: if it is set then D is replaced by the

contents of the location addressed by D at the last stage of address

evaluation.

The effective address is evaluated the same way for every instruction indepen¬

dent of the particular machine function specified.

The eight machine functions are given by table 7.1.

Table 7.1 The INTCODE machine functions

Mnemonic Operation Specification

L Load B := A; A := D
S Store ! D := A
A Add A := A + D
J Jump C := D
T Jump if true IF A THEN C := D
F Jump if false UNLESS A DO C := D
K Procedure call D := P + D

D!J2, D! 1 := P, C
P, C := D, A

X Execute operation (miscellaneous operations, mainly arithmetical or
logical operating on A and B - see program text, page
140 for details)

7.4.2 INTCODE assembly language

The assembly language for INTCODE has been designed to be compact and

simple to assemble, but care has also been taken so that it can be read and modified

Compiler portability 135

with reasonable ease by a programmer. The text of the assembly language is

composed of letters, digits, spaces, newlines, and the characters slash (/) and

dollar ($). Slash is used as a continuation symbol; it is skipped and the remaining

characters of the line up to and including the next newline character are ignored.

Its main purpose is to simplify the efficient use of cards as a medium for

transferring INTCODE programs. Dollar marks the entry point of a procedure,

with the sole purpose of helping the implementer to find his way around the

compiled code.

The assembly form of an instruction consists of the mnemonic letter for the

machine function, optionally followed by I if indirection is specified, optionally

followed by P or G if P or G modifications are specified, followed by the address

which is either a signed integer or an assembly parameter of the form Ln, where n

is an integer. Assembly parameters are used to label points in the program. A

number not preceded by a letter is interpreted as a label and causes the specified

assembly parameter to be set to the address of the next location to be loaded.

The statement Dk will allocate a static storage location initialised to the signed

integer k. The statement Dim will allocate a static storage location initialised with

the value of the assembly parameter Ln. Characters may be packed and assembled

by using character statements of the form Ck where k is the integer code of the

character. The character size and number of characters per word are machine

dependent and it is left to the assembler to pack character strings and pad them

appropriately with zeros.

It is possible to initialise global variables during assembly using a directive of the

form GgLn. For example, G36L73 will cause global 36 of the INTCODE machine

to be set to the value of assembly parameter number 73.

Z is used to mark the end of each segment of code. Its effect is to unset all the

assembly parameters.

7.4.3 Example

As an example, the following program (which was also used in the discussion of

OCODE)

GLOBAL $(START:1; WRITEF:76 $)

LET START() BE

$(LET F(N) = N=0 -> 1, N*F(N-1)

FOR I = 1 TO 10 DO WRITEF("F(^N) = £11*11", I, F(I))

$)

136 Compiler portability

compiles into the following INTCODE:

$ 1 JL5

$ 3 L0 LIP2 X10 FL7 LI SP3 JL6 7 LIP2 LI X9 SP5 LIL4 K3 LIP2

X5 SP3 6 LIP3 X4

5 LI SP2 JL8 9 LL499 SP5 LIP2 SP6 LIP2 SP9 LIL4 K7

SP7 LIG76 K3 LIP2 A1 SP2

8 LIP2 L10 X15 TL9 X4 2

4 DL3 499 Cll C70 C40 C37 C78 C41 C32 C61 C32 C37 C78 C10

G1L1

Z

The effectiveness of INTCODE lies mainly in its simplicity making it easy to

understand and implement; however, it is also compact and even with a simple

non-optimising code generator the compiled code is smaller than straightforward

machine code for most machines by a factor of nearly two to one. A typical

INTCODE interpreter runs about ten times slower than compiled code on the

same machine.

7.4.4 The INTCODE assembler and interpreter

To complete the description of INTCODE, we present the entire source of an

INTCODE assembler and interpreter written in BCPL. This program assumes

that string and character constants appearing in the INTCODE text use the

ASCII code, but that it is to run on a 16-bit EBCDIC machine, hence the need for

the ASCII and EBCDIC tables near the end. It has been tested on the IBM 370 (a

32-bit EBCDIC machine).

GET "LIBHBR"

MANIFEST $(

FSHIFT=13

DBIT=#10000: PBIT=#4000; GBIT=#2000; IBIT=#1000

ABITS=#777

W0RDSIZE=16; BYTESIZE=8; LABMAX=500

LIG1=#003001

K2 =#140002

X22 =#160026

$)

GLOBAL $(

SYSPRINT:100; SOURCE:101; ETOA:102; ATOE:103

G:110; P:111; CH:112; CYCLECOUNT:113

LABV:120; CP:121; A:122; B:123; C:124; D:125; W:126 $)

Compiler portability 137

LET ASSEMBLEO BE

$(1 LET V = VEC LABMAX

LET F = 0

LABV := V

CLEAR:FOR I = 0 TO LABMAX TO LABV!I := 0

CP := 0

NEXT: RCH()

SW: SWITCHON CH INTO

$(S DEFAULT: IF CH=ENDSTREAMCH RETURN

WRITEF("*NBAD CH %C AT P = ^N*N", CH, P)

GOTO NEXT

CASE ' 0' : CASE ' 1' : CASE '2': CASE '3' -.CASE '4':

CASE '5':CASE '61:CASE '7':CASE '8':CASE '9':

SETLAB(RDN())

CP : = 0

GOTO SW

CASE '$':CASE '*S':CASE '*N': GOTO NEXT

CASE 1L': F := 0; ENDCASE

CASE 'S': F := 1; ENDCASE

CASE 'A': F := 2; ENDCASE

CASE 'J': F := 3; ENDCASE

CASE ’T': F := 4; ENDCASE

CASE ' F': F := 5; ENDCASE

CASE 'K': F := 6; ENDCASE

CASE 'X': F := 7; ENDCASE

CASE 'C': RCH(); STC(HDN()); GOTO SW

CASE 'D': RCH()

TEST CH='L'

THEN $(RCH()

STW(0)

LABREF(RDN(), P-1) $)

ELSE STW(RDN())

GOTO SW

138 Compiler portability

CASE ' G' : ECHO

A := RDN() + G

TEST CH='1' THEN HCH()

ELSE WRITEF("*NBAD CODE AT P = %N*N", P)

! A := 0

LABREF(HDN(), A)

GOTO SW

CASE 'Z': FOR I = 0 TO LABMAX DO

IF LABV!I>0 DO WRITEF("L?SN UNSET*N", I)

GOTO CLEAR $)S

W := F«FSHIFT

RCH()

IF CH=’I' DO $(W := W+IBIT; RCH() $)
IF CH='P' DO $(w := W+PBIT; RCH() $)
IF CH=1G1 DO $(w := 1+GBIT; RCH() $)

TEST CH='L'

THEN $(RCH()

STW(W+DBIT)

STW(0)

LABREF(RDN(), P-1) $)

ELSE $(LET A = RDN()

TEST (A&ABITS)=A

THEN STW(1+A)

ELSE $(STW(W=DBIT); STW(A) $) $)

GOTO SW $)1

AND STW(W) BE $(!P := W

P, CP := P+1, 0 $)

AND STC(C) BE $(IF CP=0 DO $(STW(0); CP : = WORDSIZE $)

CP := CP - BYTESIZE

! (P-1) := ! (P-1) + (C«CP) $)

AND RCH() BE $(1 CH := RDCH()

UNLESS CH=1/' RETURN

UNTIL CH=' *N' DO CH := RDCH() $)1 REPEAT

Compiler portability 139

AND RDN() = VALOF

$(LET A, B = 0, FALSE

IF CH='-' DO $(B := TRUE; RCH() $)

WHILE 101<=CH<='9' DO $(A := 10*A+CH-'0'; RCH() $)

IF B DO A := -A

RESULTIS A $)

AND SETLAB(N) BE IF INRANGE(N) THEN

$(LET K = LABV!N

IF K<0 THEN

WRITEF("L?SN ALREADY SET TO AT P = ?SN*N" ,N,-K,P)

WHILE K>0 DO $(LET N = ! K

!K := P

K := N $)

LABV!N := -P $)

AND LABREF(N, A) BE IF INRANGE(N) THEN

$(LET K = LABV!N

TEST K<0 THEN K := -K OR LABV!N := A

!A := !A + K $)

AND INRANGE(N) = VALOF

$(IF 0<=N<=LABMAX RESULTIS TRUE

WRITEF("LABEL L?SN OUT OF RANGE AT P = ?!N*N" , N, P)

RESULTIS FALSE $)

AND INTERPRET() = VALOF

$(1 CYCLECOUNT := CYCLECOUNT + 1

W := ! C

C := C + 1

TEST (W&DBIT)=0

THEN D := W&ABITS

ELSE $(D := !C; C := C+l $)

IF (W & PBIT) NE 0 THEN D := D + P

IF (W & GBIT) NE 0 THEN D := D + G

IF (W & IBIT) NE 0 THEN D := !D

SWITCHON W»FSHIFT INTO

140 Compiler portability

$(ERROR:

DEFAULT: SELECT0UTPUT(SYSPRINT)

WRITEF("*NINTC0DE ERROR AT C

RESULTIS -1

CASE 0: B : = A; A := D; LOOP

CASE 1: !D := A; LOOP

CASE 2: A = A + D 9 LOOP

CASE 3: C = D; LOOP

CASE 4: IF A THEN C : = D; LOOP

CASE 5: UNLESS A DO C := D; LOOP

CASE 6: D : = P + D

D!0 , D!1 : = P, c
P, C := D, A

LOOP

CASE 7: SWITCHON D INTO

$(DEFAULT: GOTO ERROR

CASE 1 A : = • A; LOOP

CASE 2 A : = -A: LOOP

CASE 3 A : = NOT A; LOOP

CASE 4 C : = P’l

P : = P!0

LOOP

CASE 5 A : = B * A; LOOP

CASE 6 A : = B / A; LOOP

CASE 7 A : = B REM A; LOOP

CASE 8 A : = B + A; LOOP

CASE 9 A : = B - A; LOOP

CASE 10: A := B = A; LOOP

CASE 11: A := B NE A; LOOP

CASE 12: A := B < A; LOOP

CASE 13: A := B >= A; LOOP

CASE 14: A := B > A; LOOP

CASE 15: A := B <= A; LOOP

CASE 16: A := B « A; LOOP

CASE 17: A := B » A; LOOP

CASE 18: A := BAA; LOOP

CASE 19: A := B | A; LOOP

CASE 20: A := B NEQV A; LOOP

CASE 21: A := B EQV A; LOOP

= ?SN*N" , C-l)

Compiler portability 141

CASE 22: RESULTIS 0 // FINISH

CASE 23: B, D := C!0, C! 1 // SWITCHON

UNTIL B=0 DO

$(B, C : = B-l, C+2

IF A=C!0 DO

$(D := C!1

BREAK $) $)

C := D

LOOP

// cases 24 upwards are only called from the following

// hand-written INTCODE LIBRARY - ICLIB:

// 11 LIP2 X24 X4 G11L11 /SELECTINPUT

// 12 LIP2 X25 X4 G12L12 /SELECTOUTPUT

// 13 X26 X4 G13L13 /RDCH

// 14 LIP2 X27 X4 G14L14 /WRCH

// 42 LIP2 X28 X4 G42L42 /FINDINPUT

// 41 LIP2 X29 X4 G41L41 /FINDOUTPUT

// 30 LIP2 X30 X4 G30L30 /STOP

// 31 X31 X4 G31L31 /LEVEL

// 32 LIP3 LIP2 X32 G32L32 /LONGJUMP

// 46 X33 X4 G46L46 /ENDREAD

// 47 X34 X4 G47L47 /ENDWRITE

// 40 LIP3 LIP2 X35 G40L40 /APTOVEC

// 85 LIP3 LIP2 X36 X4' G85L85 / GETBYTE

// 86 LIP3 LIP2 X37 X4 G86L86 / PUTBYTE

// Z

CASE 24:

CASE 25:

CASE 26:

CASE 27:

CASE 28:

CASE 29:

CASE 30:

CASE 31:

CASE 32:

CASE 33:

CASE 34:

SELECTINPUT(A); LOOP

SELECTOUTPUT(A); LOOP

A := ETOA!RDCH(); LOOP

WRCH(ATOE!A); LOOP

A := FINDINPUT(STRING370(A)); LOOP

A := FINDOUTPUT(STRING370(A)); LOOP

RESULTIS A // STOP(A)

A := P'0; LOOP // used in LEVEL()

P, C := A, B // used in LONGJUMP(P.L)

LOOP

ENDREAD(); LOOP

ENDWRITE(); LOOP

142 Compiler portability

CASE 35: D := P+B+l // used in APTOVEC(F, N)

D!0, Dll, D!2, D!3 := P!0, P!l, P, B

P, C := D, A

LOOP

CASE 36: A := ICGETBYTE(A, B) // GETBYTE(S, I)

LOOP

CASE 37: ICPUTBYTE(A, B, P!4) // PUTBYTE(S, I, CH)

LOOP

$) $) $)1 REPEAT

AND STRING370(S) = VALOF

$(LET T = TABLE 0, 0, 0, 0,0,0,0,0

PUTBYTE(T, 0, ICGETBYTE(S, 0))

FOR I = 1 TO ICGETBYTE(S,0) DO

POTBYTE(T,I,ATOE!ICGETBYTE(S,I))

RESULTIS T $)

AND ICGETBYTE(S, I) = VALOF

$(LET W = S1(1/2)

IF (I&1)=0 DO W := W»8

RESULTIS W&255 $)

AND ICPUTBYTE(S, I, CH) BE

$(LET P = SS!(1/2)

LET W = !P

TEST (I&1)=0 THEN !P := Wÿ | CH«8

ELSE ! P := W&.#XFF00 | CH $)

LET START(PARM) BE

$(1

LET PROGVEC = VEC 20000

LET GLOBYEC = VEC 400

G, P := GLOBVEC, PROGVEC

SYSPRINT := FINDOUTPUT("SYSPRINT")

SELECTOUTPUT(SYSPRINT)

WRITES("INTCODE SYSTEM ENTERED*N")

Compiler portability 143

SOURCE := FINDINPUTC"INTIN")

SELECTINPUT(SOURCE)

ASSEMBLEO

SOURCE := FINDINPUTC"SYSIN")

UNLESS SOURCE=0 DO SELECTINPUT(SOURCE)

WRITEF("*NPR0GRAM SIZE = JSN*N" , P-PROGVEC)

ATOE := 1+TABLE -1, // assuming ENDSTREAMCH=-1

0, 0, 0, 0, 0, 0, 0, 0, // ASCII to EBCDIC

0, 5, 21, 0, 12, 0, 0 . 0, // ' *T' ' *N » ' * P'

0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,

64, 90, 127, 123, 91, 108, 80, 125, // ' *S' i II # $ % & 1

77, 93, 92, 78, 107, 96, 75, 97, // () * + y - . /
240, 241, 242, 243, 244, 245, 246, 247, // 0 1 2 3 4 5 6 7

248, 249, 122, 94, 76, 126, 110, 111. // 8 9 : ; < = > ?

124, 193, 194, 195, 196, 197, 198, 199, // a A B C D E F G

200, 201, 209, 210, 211, 212, 213, 214, // H I J K L M N 0

215, 216, 217, 226, 227, 228, 229, 230, // P Q R S T U V W

231, 232, 233, 66, 98, 67, 101, 102, // X Y Z [\ 1 t <-

64, 129, 130, 131, 132, 133, 134, 135, // a 5 c d e f g
136, 137, 145, 146, 147, 148, 149, 150, // h i j k 1 m n O

151, 152, 153, 162, 163, 164, 165, 166, // P q r s t u V w

167, 168, 169, 64, 79, 64, 95, 255 // X y X 1 “1

ETOA := 1+TABLE -1, // assuming ENDSTREAMCH=-1

0, 0, 0, 0, 0. #11, 0, 0,
0, 0, 0, #13, #14, #15, 0, 0,
0, 0, 0, 0, 0. #12, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, #12, 0, 0,
0, 0, 0, 0, 0, 0. 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0. 0, 0,

#40, 0, #133, #135, 0, 0, 0, 0,
0, 0, 0, #56, #74, #50, #53, #174,

#46, 0, 0, 0, 0, 0. 0, 0,

0, 0, #41, #44, #52, #51, #73, #176,

144 Compiler portability

#55, #57, #134, 0, 0, #136, #137, 0,

0, 0, 0, #54, #45, #140, #76, #77,

0. 0. 0, 0, 0, 0, 0, 0,
0, 0, #72, #43, #100, #47, #75, #42,

0, #141, #142, #143, #144, #145, #146, #147,

#150, #151, 0, 0, 0, 0, 0, 0,

0, #152, #153, #154, #155, #156, #157, #160,

#161, #162, 0, 0, 0, 0, 0, 0,

0, 0, #163, #164, #165, #166, #167, #170,

#171, #172, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, #101, #102, #103, #104, #105, #106, #107,

#110, #111, 0, 0, 0, 0, 0, 0,
0, #112, #113, #114, #115, #116, #117, #120,

#121, #122, 0, 0, 0, 0, 0, 0,
0, 0, #123, #124, #125, #126, #127, #130,

#131, #132, 0, 0, 0, 0, 0, 0,
#60, #61, #62, #63, #64, #65, #66, #67,
#70, #71, 0, 0, 0, 0, 0, 0

C := TABLE LIG1, K2, X22

CYCLECOUNT := 0

A := INTERPRET()

SELECTOUTPUT(SYSPRINT)

WRITEF("*N*NEXECUTION
ntmT nnArTiTm a \

CYCLES = ?SN, CODE = £N*N

CYCLECOUNT, A)

IF A<0 DO MAPSTOREO

FINISH $)1

8

Language definition

8.1 Program

At the outermost level, a BCPL program is a sequence of declarations.

8.2 Elements

<element> ::= <identifier> | <number> |

<string constant> | <character constant> |

TRUE | FALSE

An <identifier> consists of a sequence of letters, digits and dots, the first

character of which must be a letter.

A <number> is either an integer consisting of a sequence of decimal digits, or an

octal constant consisting of the character # followed by octal digits, or a hexadeci¬

mal constant consisting of #X followed by hexadecimal digits. The reserved words

TRUE and FALSE are used to represent the two truth values.

A <string constant> consists of up to 255 characters enclosed in string quotes

("). Within a string, the character " may be represented only by the pair * " and

the character * can only be represented by the pair * *.

Other characters may be represented as follows:

*N

*T

* S

*B

*p

is newline

is horizontal tab

is space

is backspace

is newpage

The internal representation of a string is the address of the region of store

into which the length and characters of the string are packed.

A ccharacter constant> consists of a single character enclosed in character

quotes ('). The character ' can be represented in a character constant only by the

pair * '. Other escape conventions are the same as for a string constant. A

character constant is right justified in a word.

145

146 Language definition

8.3 Expressions

All forms of expressions are listed below. El, E2 and E3 represent arbitrary

expressions except as noted in the descriptions which follow the list, and K0, K1

and K2 represent constant expressions (whose values can be determined at

compile-time, see section 8.3.8). C represents a command.

Primary < element >
(El)

Function call El()
El(E2, E3, . . .)

Addressing E11E2 subscripting
3E1 address generation
!E1 indirection

Arithmetic El * E2
El / E2
El HEM E2
El + E2
+ El
El - E2
- El

integer remainder

Relational El = E2
El ->=E2
El < E2
El <= E2
El > E2
El >= E2

not equal

Shift El « E2 left shift by E2 bits
El » E2 right shift by E2 bits

Logical -i El not (complement) El
El & E2 and
El | E2 inclusive or
El EQV E2 bitwise equivalence
El NEQV E2 bitwise not-equivalence

(exclusive or)
Conditional El -> E2, E3
Table TABLE K0.K1.K2, . . .
Valof VALOF C see section 8.5.5.

The relative binding power of the operators is as follows:

(Highest, most binding) Function call (see section 8.6.6)

! (subscripting)

a !

* / HEM

Language definition 147

+ -

Relational

Shifts (see section 8.3.4)

~1

&
I
EQV NEQV

->

TABLE

(Lowest, least binding) VALOF

In order that the rule allowing the omission of most semicolons should work

properly, a dyadic operator may not be the first symbol on a line.

8.3.1 Addressing operators

If the value X is the address of a word in storage, then X+1 is the address of the next

word.

If V is a variable, then associated with V is a single word of memory, which is

called a cell. The contents of the cell is called the value of V and the address of the

cell is called the address of V. An address may be used by applying the indirection

operator (!). The expression

! El

has, as value, the contents of the cell whose address is the value of the expression

El.

An address may be generated by means of the operator a. The expression

aEl

is only valid if El is one of the following:

1. an identifier (not declared by a manifest declaration), in which case a V is the

address of V,

2. a subscripted expression, in which case the value of aEl! E2 is E1+E2, or

3. an indirection expression, in which case the value of a !El is El.

The interpretation of

! El

depends on context as follows:

1. if it appears as the left hand side of an assignment statement

!E1:= E2

148 Language definition

El is evaluated to produce the address of a cell and E2 is stored in it,

2. a (! El) = El as noted above, or

3. in any other context El is evaluated and the contents of that value, treated as

an address, is taken.

Thus, 1 forces one more contents-taking than is normally demanded by the

context.

8.3.2 Arithmetic operators

The operators * and / denote integer multiplication and division. The operator

HEM yields the integer remainder after dividing the left-hand operand by the right

hand one if both operands are positive, it is otherwise implementation dependent.

The operators + and - may be used in either a monadic or dyadic context and

perform the appropriate integer arithmetic operations. The treatment of arith¬

metic overflow is undefined.

8.3.3 Relations

A relational operator compares the integer values of its two operands and yields a

truth-value (TRUE or FALSE) as result. The operators are as follows:

= equal

-i= not equal

< less than

<= less than or equal

> greater than

>= greater than or equal

The operators = and ~i= make bitwise comparisons of their operands and so may

be used to determine the equality of values regardless of the kind of objects they

represent.

An extended relational expression such as

1 A'<=CH<='Z'

is equivalent to

'A'<=CH A CH<='Z

Language definition 149

8.3.4 Shift operators

In the expression E1«E2 (or E1»E2), E2 must evaluate to yield a non-negative

integer. The value is El, taken as a bit-pattern, shifted left (or right) by E2 places.

Vacated positions are filled with zeroes.

Syntactically, the shift operators have lower precedence on the left than

relational operators but greater precedence on the right. Thus, for example,

A » 5 = 14 is equivalent to (A»5) = 14

whereas

14 = A » 5 is equivalent to (14=A) » 5

8.3.5 Logical operators

The effect of a logical operator depends on context. There are two logical

contexts: ‘truth-value’ and ‘bit’. The truth-value context exists whenever the result

of the expression will be interpreted immediately as true or false. In this case each

sub-expression is interpreted, from left to right, in truth-value context until the

truth or falsehood of the expression is determined. Then evaluation stops.

If an expression in a truth-value context yields neither true nor false the effect is

undefined.

In a ‘bit’ context, the operator -i causes bit-by-bit complementation of its

operand. The other operators combine their operands bit-by-bit according to the

following table:

Operands & 1 NEQV EQV

0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 1

8.3.6 The conditional operator

The expression

El -> E2, E3

is evaluated by evaluating El in truth-value context. If it yields true, then the

expression has value E2, otherwise E3.E2 and E3 are never both evaluated.

150 Language definition

8.3.7 Table

The value of the table expression

TABLE K0, Kl, K2, ...

is the address of a static vector of cells initialised to the values of K0, Kl, K2, ...

which must be constant-expressions.

8.3.8 Constant-expressions

A constant-expression is any expression involving only numbers, character

constants, names declared by manifest declarations, TRUE, FALSE and the opera¬

tors *, /, REM, +, -, «, », & and | .

8.4 Section brackets

Blocks, compound commands and some other syntactic constructions use the

symbols $(and $) which are called opening and closing section brackets. A

section bracket may be tagged with a sequence of letters, digits and dots (the same

characters as are used in identifiers).

An opening section bracket can be matched only by an identically tagged closing

bracket. When the compiler finds a closing section bracket with a non-null tag, if

the nearest opening bracket (smallest currently open section) does not match, that

section is closed and the process repeats until a matching opening section bracket

is found. Thus is it impossible to write sections which are overlapping (not nested).

8.5 Commands

All forms of commands are listed below. E, El, E2, E3, FI, F2 denote expressions,

K a constant-expression, C, Cl and C2 commands, and D1 and D2 declarations.

Routine call E(E1,E2, ...)

E()

Assignment El, E2, . . . :=F1, F2, . . .

Conditional IF E THEN C

UNLESS E DO C

TEST E THEN Cl ELSE C2

Language definition 151

Repetitive

Resultis

Switchon

T ransfer

Compound

Block

WHILE E DO C

UNTIL E DO C

C REPEAT

C REPEATWHILE E

C REPEATUNTIL E

FOR N = El TO E2 BY K DO C

FOR N = El TO E2 DO C

RESULTIS E

SWITCHON E INTO <compound command>

GOTO E

FINISH

RETURN

BREAK

LOOP

ENDCASE

$(Cl; 02; ... $)

$(Dl; D2; .. .; Cl; C2; . . . $)

Discussion of the routine call is deferred until section 8.6.6 where function and

routine declarations are described.

8.5.1 Assignment

The command

El := FI

causes the value of FI to be stored in the cell specified by El. El must have one of

the following forms:

(1) the identifier of a variable <identifier>

(2) a subscripted expression E2 \ E3

(3) an indirection expression ! E2

In case (1), the cell belonging to the identifier is updated. Cases (2) and (3) have

been described in section 8.3.1.

A list of assignments may be written thus:

El, E2, En := FI, F2, Fn

152 Language definition

where Ei and Fi are expressions. This is equivalent to

El := FI

E2 := F2

En := Fn

8.5.2 Conditional commands

IF E THEN Cl

UNLESS E DO C2

TEST E THEN Cl ELSE C2

Expression E is evaluated in truth-value context. Command Cl is executed if E is

true, otherwise the command C2 is executed.

8.5.3 The for-command

FOE N = El TO E2 BY K DO C

FOE N = .E1 TO E2 DO C

N must be an identifier and K must be a constant expression. This command will

be described by showing an equivalent block.

$(LET N, T = El, E2

UNTIL N>T DO $(C

N := N + K $)

$)

If the value of K is negative the relation N>T is replaced by N<T. The declaration

LET N, T = El, E2

declares two new cells with identifiers N and T, T being a new identifier that does

not occur in C. Note that the control variable N is not available outside the scope of

the command.

The command

FOE N = El TO E2 DO C

Language definition 153

is equivalent to

FOR N = El TO E2 BY 1 DO C

8.5.4 Other repetitive commands

WHILE E DO C

UNTIL E DO C

C REPEAT

C REPEATWHILE E

C REPEATUNTIL E

Command C is executed repeatedly until condition E becomes true or false as

implied by the command. If the condition precedes the command (WHILE,

UNTIL) the test will be made before each execution of C. If it follows the command

(REPEATWHILE, REPEATUNTIL), the test will be made after each execution of C.

In the case of

C REPEAT

there is no condition and termination must be by a transfer or resultis-command

in C. C will usually be a compound command or block.

Within REPEAT, REPEATWHILE and REPEATUNTIL, C is taken as short as

possible. Thus, for example

IF E THEN C REPEAT

is the same as

IF E THEN $(C REPEAT $)

and

E := VALOF C REPEAT

is the same as

E := VALOF $(C REPEAT $)

154 Language definition

8.5.5 Resultis-command and valof -expression

The expression

VALOF C

where C is a command (usually a compound command or block) is evaluated by

executing the declarations and commands in C until a command of the form:

RESULTIS E

is encountered. The expression E is evaluated, its value becomes the value of the

valof-expression (which must be in the current procedure body) and execution of

the commands within C ceases. A valof-expression must contain one or more

resultis-commands and one must be executed. In the case of nested valof-

expressions, the resultis-command terminates only the innermost valof-expres¬

sion containing it.

8.5.6 Switchon-command

SWITCHON E INTO <compound command>

where the compound command contains labels of the form

CASE K:

or

DEFAULT:

The expression E is first evaluated and, if a case exists which has a constant with the

same value, then execution is resumed at that label; otherwise, if there is a default

label, then execution is continued from there, and if there is not then execution is

resumed from just after the end of the switchon-command.

8.5.7 Transfer of control

GOTO E

FINISH

RETURN

BREAK

LOOP

ENDCASE

Language definition 155

The command GOTO E interprets the value of E as the address of a point in the

program (which must be in the current procedure body), and transfers control to

that point. The command FINISH causes an implementation-dependent

termination of the entire program. RETURN causes control to return to the caller

of a routine. BREAK causes execution to be resumed at the point just after the

smallest textually enclosing repetitive command. The repetitive commands are

those with the following key words:

UNTIL,WHILE, REPEAT, REPEATWHILE, REPEATUNTIL, FOR.

LOOP causes execution to be resumed at the point just before the end of the

body of a repetitive command. For a for-command it is the point where the control

variable is incremented, and for the other repetitive commands it is where the

condition (if any) is tested. ENDCASE causes execution to be resumed at the point

just after the smallest textually enclosing switchon-command.

8.5.8 Compound command

A compound command is a sequence of commands enclosed in section brackets.

$(Cl; C2; ... $)

the commands Cl, C2, .. . are executed in sequence.

8.5.9 Block

A block is a sequence of declarations followed by a sequence of commands

enclosed together in section brackets.

$(Dl; D2; ... ; Cl; C2; ... $)

The declarations Dl, D2, . . . and the commands Cl, C2, . . . are executed in

sequence. The scope of an identifier (i.e. the region of program where the

identifier is known) declared in a declaration is the declaration itself (to allow

recursive definition), the subsequent declarations and the commands of the block.

Notice that the scope does not include earlier declarations or extend outside the

block.

8.6 Declarations

Every identifier used in a program must be declared explicitly. All forms of

declaration are shown below, where N, Nl, N2 are names, K, Kl, K2 are constant

156 Language definition

expressions, and E, El, E2 are expressions.

Global

Manifest

Static

Dynamic

Vector

Function

Routine

Formal parameter

Label

For-loop

GLOBAL $(N1:K1; N2:K2; ...$)

MANIFEST $(N1=K1; N2=K2; . . . $)

STATIC $(N1=K1; N2=K2; . . . $)

LET Nl, N2, . . . = El, E2, ...

LET N = VEC K

LET N(N1, N2, ...) = E

LET N(N1, N2, ...) BE C

(these occur as part of function and routine

declarations)

N:

FOB N = El TO E2 BY K TO C

The declaration of formal parameters is covered in sections 8.6.6 and 8.6.7, and

the for-loop is described in section 8.5.3. The scope of identifiers declared at the

head of a block is described in the previous section.

8.6.1 Global

A BCPL program need not be compiled in one piece. The sole means of

communication between separately compiled segments of program is the global

vector. The declaration

GLOBAL $(N1:K1 $)

associates the identifier Nl with the location K1 in the global vector. This name

identifies a static cell which may be accessed by name or by any other identifier

associated with the same global vector location.

Global declarations may be Combined. The declaration

GLOBAL $(Nl:K1; N2:K2; ...; Nn:Kn $)

is equivalent to

GLOBAL $(N1:K1 $)

GLOBAL $(N2:K2 $)

GLOBAL $(Nn:Kn $)

Language definition 157

8.6.2 Manifest

An identifier may be associated with a constant by the declaration

MANIFEST $(N1=K1 $)

An identifier declared by a manifest declaration may only be used in contexts

where a constant would be allowable. It may not, for instance, appear on the

left-hand side of an assignment. Like global declarations, manifest declarations

may be combined. The declaration

MANIFEST $(N1=K1; N2=K2; Nn=Kn $)

is equivalent to

MANIFEST $(N1=K1 $)

MANIFEST $(N2=K2 $)

MANIFEST $(Nn=Kn $)

8.6.3 Static

A variable may be declared and given an initial value by the declaration

STATIC $(N1=K1 $)

The variable N1 has a cell permanently allocated to it throughout the execution

of the program (even when control is not dynamically within the scope of the

declaration). Like global declarations, static declarations may be combined. The

declaration

STATIC $(N1=K1; N2=K2; Nn=Kn $)

is equivalent to

STATIC $(N1=K1 $)

STATIC $(N2=K2 $)

STATIC $(Nn=Kn $)

158 Language definition

8.6.4 Dynamic

The declaration

LET NT, N2, Nn = El, E2, En

creates dynamic cells and associates with them the identifiers N1, N2, . . . , Nn.

These cells are initialised to the values of El, E2, . . . , En. The space reserved

for these cells is released on leaving the block in which the declaration appears.

The order of initialisation of N1_Nn is not defined.

8.6.5 Vector

The declaration

LET N = VEC K

where K is a constant-expression, creates a dynamic vector by reserving K+l cells

of contiguous storage in memory, plus one cell which is associated with the

identifier N. Execution of the declaration causes the value of N to become the

address of the K+l cells. The storage allocated is released on leaving the block.

8.6.6 Procedure

The declaration

LET N(N1, N2, ..., Nm) = E

declares a function named N with in parameters. The parentheses are required

even if m — 0. A parameter name has the same syntax as an identifier, and its scope

is the expression E. A routine declaration is similar to a function declaration except

that its body is a command:

LET N(N1, N2, ..., Nm) BE C

If the declaration is within the scope of a global declaration for N, then the global

cell will be initialised to the entry address of the procedure before execution of the

program. Otherwise, a static cell is created, associated with the identifier N and

initialised to the entry address.

Language definition 159

The procedure is invoked by the call

E(E1, E2, ...)

where expression E evaluates to the entry address. In particular, within the scope

of the identifier N, the procedure may be invoked by the call

N(E1, E2, ...)

provided the value of N has not been changed during the execution of the

program.

Each value passed as a parameter is copied into a newly created cell which is then

associated with the corresponding parameter name. The cells are consecutive in

store and so the argument list behaves like an initialised dynamic vector. The

space allocated for the argument list is released when evaluation of the call is

complete. The arguments are always passed by value; however, the value passed

may, of course, be an address. The number of parameters passed in a call of a

procedure need not equal the number of formal parameters in the procedure

declaration. Implications of this are discussed in section 4.2.3. A function call is a

call in the context of an expression. If a function is being called, the result is the

value of E, and if a routine is being called, the result is undefined. A routine call is a

call in the context of a command and may be used to call either a function or a

routine. A routine call has no result. No dynamic (or vector or formal) variable

that is declared outside a procedure may be directly referred to from within its

body.

8.6.7 Label

A label may be declared by

N:

A label declaration may precede any command or label declaration, but may not

precede any other form of declaration. Exactly as in the case of a procedure

declaration, a label declaration creates a static cell if it is not within the scope of a

global declaration of the same identifier. The static or global cell is initialised

before execution with the address of the point in the program labelled, so that the

command

GOTO N

has the expected effect.

160 Language definition

The scope of a label depends on its context. It is the smallest of the following

regions of program:

(1) the command sequence of the smallest textually enclosing block,

(2) the body of the smallest textually enclosing valof-expression or procedure,

(3) the body of the smallest textually enclosing for-command.

Using a goto-command to transfer to a label which is outside the current

procedure will produce undefined results.

8.6.8 Simultaneous declaration

Any declaration of the form

LET ...

may be followed by one or more declarations of the form

AND ...

where any construct which may follow LET may follow AND. As far as scope is

concerned, such a collection of declarations is treated like a single declaration.

This makes it possible, for example, for two procedures to know each other

without recourse to the global vector. The order of declaration of items connected

by AND is not defined.

8.7 Miscellaneous features

8.7.1 Get-directives

It is possible to include a file in the source text of a program using a get-directive of

the form:

GET "string"

where string is an implementation-dependent file specifier. A get-directive

should appear on a line by itself.

8.7.2 Comments and spaces

The character pair // denotes the beginning of a comment. All characters from

(and including) // up to but not including the newline character will be ignored by

Language definition 161

the compiler. Blank lines are also ignored. Space and tab characters may be

inserted freely except inside an element, a reserved word (e.g. VALOF), or an

operator (e.g. : =). Space or tab characters are required to separate identifiers or

system words from adjoining identifiers or system words.

8.7.3 Optional symbols and synonyms

The reserved words DO and THEN are synonyms in BCPL, as are OH and ELSE.

Most implementations of BCPL also allow other synonyms.

In order to make BCPL programs easier to read and to write, the compiler

allows the syntax rules to be relaxed in certain cases. The word DO (or THEN) may

be omitted whenever it is immediately followed by the keyword of a command

(e.g. EESULTIS). Any semicolon occurring as the last symbol of a line may be

omitted.

8.8 The formal syntax of BCPL

This section presents the Backus Naur form (BNF) of the syntax of BCPL. The

whole syntax is given, with the following exceptions:

1. Comments are not included, and the space character is not represented even

where required.

2. The section-bracket tagging rule is not included, since it is impossible to

represent in BNF.

3. The graphic escape sequences allowable in string and character constants are

not represented.

4. No account is made of the rules which allow dropping of semicolon and DO in

most cases. These rules unnecessarily complicate the BNF syntax yet are easy

to understand by other means.

5. BCPL has several synonymous system words and operators: for example, DO

and THEN. Only a standard form of these Symbols is shown in the syntax.

6. Certain constructions can be used only ift .specific contexts. Not all these
i v

restrictions are included: for example, CA£-E and DEFAULT can only be used

in switches, and EESULTIS only in expressions. Finally, there is the necessity

of declaring all identifiers that are used in a program.

7. There is a syntactic ambiguity relating to <repeated command> which is

resolved in section 8.5.4

The brackets [] imply arbitrary repetition of the categories enclosed.

162 Language definition

8.8.1 Identifiers, strings, numbers

<letter> :: = A|b|C|D|E|p|G|h|I|J|k|L| m| k 01 P | Q | R |

s|t|u)v|w|x|y|z

<octal digit> :: = 0il|2i3j4|5[6|7

<hexdigit> :: = 0|li2|3i4|5|6i7|8|9|A|Bi C|D E | F

<digit> :: = 0|l|2|3|4|5|6l7|8|9

<string constant> :: = "<255 or fewer characters>"

ccharacter constant> :: = 1 <one character>'

<octal number> :: = # <octal digit> [<octal digit>]

<hex number> :: = #X <hex digit> [<hex digit>]

<number> :: = <octal number> 1 <hex number> | <digit> [<digit>]

<identifier> :: = <letter> [<letter> | <digit> | .]

8.8.2 Operators

<address op> : := a | !

<mult op> : := *|/| REM

odd op> : := + 1 -

<rel op> :

A

V

II A

II V

II r II II

<shift op> : : = « | »

<and op> : := &

<or op> : := 1

<eqv op> : : = EQV 1 NEQV

<not op> : : = -i

8.8.3 Expressions

<element> : : = <character constant> | <string constant> |

<number> | <identifier> | TRUE FALSE

< primary E> : := <primary E> (<expression list>) |

< primary E> () | (<expression>) <element>

<vector E> : = < vector E> ! < primary E> | < primary E>

oddress E> : = oddress op> <address E> | <vector E>

<mult E> : = <mult E> <mult op> <address E> | <address E>

<add E> : = odd E> odd op> <mult E> | odd op> <mult E>

<mult E>

<rel E> : : = <add E> [<rel op> <add E>]

<shift E> : : = <shift E> <shift op> odd E> | <rel E>

<not E> : = <not opxshift E> | <shift E>

<and E> : : = <not E> [ond op> <not E>]

Language definition 163

<or E>

<eqv E>

<conditional E>

<expression>

:: = <and E> [<or op> <and E>]

:: = <or E> [<eqv op> <or E>]

::= <eqv E> -> <conditional E> , conditional'E> |

<eqv E>

:: = conditional E> |

TABLE <constant expression>

[, <constant expression>] |

VALOF <command>

8.8.4 Constant-expressions

<c element>

<c mult E>

<c add E>

<c shift E>

<c and E>

<constant expression>

<characterconstant> | <number> | <identifier> |

TRUE | FALSE | (<constant expression>)

<cmultE><multop><celement> | <celement>

<c add E> <add op> <c mult E> |

<add op> <c mult E> | <c mult E>

<c shift E> <shift op> <c add E> | <c add E>

<c and E> <and op> <c shift E> | <c shift E>

<constant expression> <or op> <c and E> |

<c and E>

8.8.5 Lists of expressions and identifiers

expression list> :: = <expression> [, <expression>]

<name list> :: = <name> [, <name>]

8.8.6 Declarations

<manifest item> :: =

< manifest list> :: =

<manifest declaration> :: =

<static declaration :: =

<global item =

<global list> :: =

<global declaration> :: =

<simple definition> :: =

<vector definition> :: =

<function dehnition> :: =

<routine definition> :: =

<identifier> = constant expression>

<manifest item> [; <manifest item>]

MANIFEST $(<manifest list> $)

STATIC $(<manifest list> $)

<identifier> : constant expression>

< global item> [; < global item]

GLOBAL $(<global list> $)

<name list> = <expression list>

<identifier> = VEC <constant expression>

<identifier> (<namelist>) = <expression> |

<identifier> () = <expression>

<identifier> (<namelist>) BE <command> |

<identifier> () BE <command>

164 Language definition

<definition>

simultaneous

declaration>

<declaration>

::= <simple definition> | <vector definition> |

<function definition> | <routine definition>

:: = LET <definition> [AND <definition>]

::= simultaneous declaration> |

<manifest declaration> | <static declaration> |

<global declaration>

8.8.7 Left-hand side expressions

<lhse> ::= <identifier> | <vector E> ! <primary E> |

! <primary E>

<left hand side list> :: = <lhse> [, <lhse>]

8.8.8 Unlabelled commands

<assignment> =

<simple command> :: =

<goto command> :: =

croudne command> :: =

<resulds command> :: =

Switchon command> :: =

<repeatable command?:: =

<repeated command? :: =

<until command?

<while command?

<for command?

<repetitive command? :: =

cleft hand side list> : = cexpression list>

BREAK | LOOP | ENDCASE | RETURN | FINISH

GOTO <expression>

cprimary E> (cexpression list>) | cprimary E> ()

RESULTIS <expression>

SWITCHON <expression> INTO

ccompound command?

<assignment> | csimple command? |

cgoto command? | croutine command? |

cresultis command? | crepeated command? |

cswitchon command? | ccompound command? |

cblock>

crepeatable command? REPEAT |

crepeatable command? REPEATUNTIL

<expression> | crepeatable command?

REPEATWHILE cexpression>

UNTIL cexpression> DO ccommand?

WHILE <expression> DO <command>

FOR cidendfier> = cexpression> TO <expression>

BY cconstant expression> DO ccommand? |

FOH cidendfier> = cexpression> TO

<expression> DO ccommand?

crepeated command? | cuntil command? |

cwhile command? | cfor command?

Language definition 165

<test command> :: =

<if command> :: =

<unless command> :: =

<unlabelled command>:: =

TEST <expression> THEN <command> ELSE

<command>

IP <expression> THEN <command>

UNLESS <expression> THEN <command>

<repeatable command> | repetitive command>

<test command> | <if command> |

8.8.9 Labelled commands

<label prefix>

<case prefix>

<default prefix>

<prefix>

<command>

= <identifier> :

= CASE <constant expression> :

= DEFAULT :

= <label prefix> | <case prefix> | <default prefix>

= <unlabelled command> |

<prefix> <command> |

<prefix>

8.8.10 Blocks and compound commands

<command list> :: =

declaration part> :: =

<block> :: =

<compound command>:: =

<program> :: =

<command> [; <command>]

<declaration> [; <declaration>]

$ (<declaration part> ; <command list> $)

$(<command list> $)

< declaration part>

References

[1] Barron, D. W., Buxton, J. N„ Hartley, D. F., Nixon, E. and Strachey, C. The

main features of CPL. Computer Journal, vol. 6, p. 134 (1963)

[2] Barron, D. W. Recursive techniques in programming. MacDonald/Elsevier

Computer Monographs no. 3 (1968)

[3] Birtwistle, G. M., Dahl, O. J., Myhrhaug, B. and Nygaard, K. Simula Begin.

Auerbach Publications (1973)

[4] Brown, P. J. (ed.) Software portability. Cambridge University Press (1977)

[5] Canaday, R. H. and Richie, D. M. The BCPL programming manual. Bell

Laboratories, Murray Hill, N.J. (1969)

[6] Kernighan, B. W. Programming in C - a tutorial. Bell Laboratories, Murray

Hill, N.J. (1972)

[7] Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. Abstract mechanisms

in CLU. Communications of the Association for Computing Machinery, vol. 20,

no. 8, p. 564 (1977)

[8] Morris, J. H. The BCPL programming manual. University of California,

Berkeley (1970)

[9] Parnas, D. L. On the criteria to be used on decomposing a system into

modules. Communications of the Association for Computing Machinery, vol. 15,

no. 12, p. 1053 (1972)

[10] Richards, M. BCPL - a tool for compiler writing and systems programing.

Proceedings of the Spring Joint Computer Conference, vol. 34, pp. 557-66 (1969)

[11] Richards, M. The portability of the BCPL compiler. Software, Practice and

Experience, vol. 1, no. 2 (1971)

[12] Stoy, J. E. and Strachey, C. OS6 - an experimental operating system for a

small computer. Part 2: Input/output and filing system. Computer Journal,

vol. 15, no. 3, p. 195 (1972)

[13] Stoy, J. E. and Strachey, C. Text of OS6. Oxford Programming Research

Group Monographs

[14] Stoy, J. E. and Strachey, C. Commentary on OS6. Oxford Programming

Research Group Monographs

167

INDEX

SYMBOLS

1 20, 30, 147 *s 9, 145

% 58 *T 9, 145

#* 57 + 17, 146, 148

#+ 57 - 17, 146, 148

#- 57 / 17, 146, 148

#/ 57 // 9, 160

#< 57 < 13, 146, 148

#<= = 57 « 40, 146, 149

#= 57 <= 13, 1'46, 148

#> 57 = 13, 146, 148

*>■- = 57 > 13, 146, 148

#-V = 57 >= 13, 146, 148

$(8, 14, 150 » 40, 146, 149

$) 8, 14, 150 : 41', 159

A 13, 39, 40 : = 9, 151
* 10, 17, 145, 146, 148 a 30, 36, 146, 147

9, 145 13, 40, 146, 147
** 10, 145 -»= 13, 146, 148

*B 9, 145 i 13, 40, 146, 147

*P 9, 145

A

ABORT 63, 78
abstract object 1
actual parameter 21, 35, 159
address generation expressions 30, 146
addressing operators 30, 147
AE tree 79, 98
Algol 60 3, 7, 8, 74, 76, 77
analysis of commands 118
analysis of definitions 116
analysis of expressions 110
AUD 22, 75, 160
applicative expression tree 79, 98
APTOVEC 54
arithmetic 17, 148
arithmetic expressions 9, 17, 146
arithmetic operators 17, 148
ASCII 9

assembler and interpreter for
INTCODE 136

assignment command 9, 150, 151

B

BACKTRACE 63
binding of operators 40, 146
bit context 149
bit operations 39, 146, 149
bit-pattern 1, 2, 42
block 14, 151, 155
bootstrapping 133
brackets, use of 40
break-command (BREAK) 38, 154

170 Index

C

C programming language 42

call-by-value 35, 76, 159

capital letters 3

CASE label 27, 154

cell 1

CG 79

CH 82 •

character constant 9, 145

character set 3

CHARCODE 88

CHECKFOR 108

code generator 79, 125, 130

code optimisation 130

colon 41, 159

colon, missing 60

commands 4, 150

commands, analysis of 118

comments 9, 160

compilation, separate 5, 45

compiler 5, 79, 124

compiler portability 124

compound commands 13, 14, 150, 152

conceptual types 2, 34

conditional commands 13, 17, 150, 152

conditional expression 17, 18, 146

conditional operator 18, 149

constant, character 9, 145

constant, decimal integer 9, 145

constant, hexadecimal 145

constant, octal 9, 145

constant, string 23, 145

constant-expression 16, 150

constants 9, 145

context determination of type 42

context, bit 149

context, truth-value 41, 149

controlled variable 16, 152

CPL 1

cross-compiler 5

D

dangling references 76

data types 2, 42

DEBUG 67

debugging 60

decimal integer constant 9, 145

declarations 3, 4, 8, 21, 22, 25, 26, 42,

45, 155

declarations, simultaneous 22, 75, 160

DECLSYSWORDS 92

DECVAL 82

DEFAULT 27, 154

definitions, analysis of 116

division 17, 148

DO 17, 161

DO needed 61

DYADIC 114

dynamic free variable 26, 62

dynamic variable declaration 8, 158

dynamic variables 4, 8, 25, 62

E

EBCDIC 9
elements 145

end-of-line 9, 145

ENDCASE 27, 154

ENDCASE, omission of 76

ENDSTREAMCH 11,47

EQV 40, 146, 147

error handling at runtime 62

error handling 60

errors, semantic 62

escape conventions 9, 145

expressions 4, 9, 16, 17, 18, 30, 146, 150

expressions, analysis of 110

extended relational expression 13, 148

extent 4

extra semicolons 60

F

FALSE 145

field-selector 57

FINDFILE 47

FINDINPUT 47

FIND0UTPUT 47

FINISH 154

FIX 57

FLOAT 57

floating point 57

for-command 16, 152

formal parameter 2, 35, 159

formal syntax of BCPL 161

formatted output 50

FORMTREE 100

Fortran 3, 7, 13, 76

free variables, dynamic, 26, 62

FREEBLK 55

freestore management 55

function call 7, 22, 159

function declaration 22, 158

functions 4, 7, 22

G

get-directive 8, 45, 160

GETBLK 55

GETBYTE 23, 49, 59

Index 171

global declaration 26, 156

global variable 25, 74

global variables, misuse of 74

global vector 4, 26, 45, 156

GOTO, erroneous use of 76

goto-command (GOTO) 41, 154, 159

H

hexadecimal constant 145

I

I/O 11,47

identifier (name) 145

if-command (IF) 13, 152

IGNORE 108

indirection 1, 30, 147

indirection expressions 146

input and output 11, 47

input and output library 48

INTCODE 133

INTCODE assembler and

interpreter 136

INTCODE assembly language 134

INTCODE example 135

INTCODE machine 133

integer representation 17

internal types 2

interpreter for INTCODE 136

L

label 41, 159

language definition 145

language extensions 47

LASSOC 114

LET .. . AND 22, 79, 160

let-declaration (LET) 8

LEVEL 52

lexical analyser 79

library 5, 47

local variables 8, 25

logical expressions 39, 146

logical operators 39, 49

LOOKUPWORD 84, 90

loop-command (LOOP) 39, 154

lower-case letters 3

M

machine independence 47

manifest constant 2, 10, 157

manifest declaration 10, 157

MAPST0HE 63

matrices 33

MAXCOM 67

mismatched parameters 77

mismatched section brackets 61

missing colon 60

missing procedure 74

Mod Comp II 67

modularity 4

modulo (remainder) operator 17, 146,

148

MULDIV 52

multiplication 17, 148

N

names (identifiers) 8, 145

name, multiple use of 75

NAMETABLE 90

NAMETABLESIZE 90

NEEDS 27

NEQV 40, 146, 149

newline, use of 7, 9, 160

NEWVEC 90, 100

NEXTSYMB 80, 82

NLPENDING 82

NULLTAG 94

number 9, 145

O

object machine 1, 124

OCODE 79, 125

OCODE example 129

octal constant 9, 145

operations 2

operator precedence 40, 146

operator precedence errors 77

operators 17, 18, 30, 39, 146, 147, 149

operators, omission of 76

optimisation of code 130

optional symbols 161

OS6 stream structure 43

output 11, 47

output, mis-selection of 78

overflow 17

P

PACKSTRING 24, 50

parameter (actual) 21, 35, 159

172 Index

parameter (formal) 21,35, 159

parameter passing 35, 159

parameter mismatch 77

FERFORHGET 84, 96

PL/I 7, 77

pointers 30

pointers, misuse of 75

portability 5

portability (compiler) 124

potholes and traps 73

precedence errors 77

precedence of operators 40, 146

precompilation 5

primary expressions 146

procedure call 21, 43, 159

procedure declaration 21, 42, 45, 158

procedure values 42, 158

procedure values, misuse of 74

procedure 4, 21, 42, 45, 158

procedure, missing 74

profile 67

program 145

PUTBYTE 3, 23, 49, 59

R

RANDOM 52

RBCOM 118

RBEXP 110

ROOM 122

RDBL0CKB0DY 104

RDCDEFS .106

RDCH 11,47

RDEF 116

RDSECT 108

RDSEQ 104

RDSTRCH 88

RDTAG 84, 94

READN 12, 48

READNUMBER 82, 96

REC.P, REC.L 102

recursion 36

relational expressions 13, 146

relational operators 13, 146, 148

relations 13, 148

relations, extended / 13, 148

remainder operator (REM) 17, 146, 148

REPEAT 16, 153

REPEATUNTIL 16, 153

REPEATWHILE 14, 153

repetitive commands 14, 151, 153

reserved words 3

resultis-command (RESULTIS) 22, 151,

154

return-command (RETURN) 22, 154

REXP 82, 112

REXPLIST 117

RNAME 108

RNAMELIST 33, 108

routine call commands 7, 159

routine declaration 158

routines 4

runtime error handling 62

runtime errors 74

runtime stack 126

S

scope 4

scope of a label 160

scope rules 38, 155

section brackets 8, 14, 150

section brackets, mismatched 61

SELECTINPUT 11,47

selectors (HI,. .., H5) 90

SELECTOUTPUT 11,47

semantic errors 62

semicolon 9, 161

semicolon, extra 60

semicolons, omissions of 147

separate compilation 5, 45, 74

shift expressions 40, 146

shift operators 40, 149

simultaneous declaration 22, 160

simultaneous declarations, misuse of 75

SLOT 58

space, use of 9, 160

stack mechanism 62

START 7

static declaration 44, 157

static variables 4, 44, 157

storage cell 1

store 1

store management 55

streams 11

string constant 145

string problems 62

string, internal representation 31, 49,

145

strings 23, 49, 145

subscription expressions 146

subscripts, misuse of 75

switchon-command 27, 151, 154

SYMB 80

SYN 79

synonyms 161

SYNREPORT 102

syntax error 60

syntax of BCPL 3, 161

Index 173

T

table (TABLE) 32, 150

table expressions 146

tabs 160

tagged section brackets 14, 161

tagging, inadvertant 61

target code 79, 125

TEST 17, 150, 152

THEN 17, 150, 152

THEN needed 61

TRACE 67

transfer commands 151

transfer of control 154

TREEVEC 100

TRN 79

TRUE 145

truth values 14

truth-value context 41, 149

type determination by context 42

types, conceptual 2, 34

types, internal 2

U

uninitialised variables 78

UNLESS 13, 17, 150, 152

UNPACKSTRING 24, 50

UNTIL 16, Ig 1, 153

V

valof-expression (VAL0F) 22, 146, 154

value 1, 2

variable declarations 8, 155

variable names 8

variables 2, 8, 25

variables, uninitialised 78

vector declaration 20, 31, 158

vector, global 4, 26, 45, 156

vectors as procedure parameters 36

vectors of characters 23

W

WHILE 14, 153

W0RDN0DE 82, 90

W0RDSIZE 82, 90

WRCH 11,47

WRITED 48

WRITEF 13,50

WRITEHEX 49

WRITEN 8, 48

WRITEOCT 49

WRITES 7,11,23,50

X

XDS Sigma 7 131

