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Foreword 

BCPL was designed by one of the authors in 1967 (Richards [10]). It underwent 

substantial development over the next five years, but since then has remained 

relatively stable. It is a small language aimed primarily at systems-programming 

applications. Its compiler is portable, and, as a result, it has over the years been 

implemented on a large number of machines worldwide. We admit to not 

knowing exactly how many different implementations currently exist, but we 

know of ones for at least twenty-five different machines. 

BCPL is used for a wide variety of systems-programming applications, ranging 

over operating systems, compilers and interpreters, data-base packages, simula¬ 

tors, text processors and editors, algebra systems, and many others. It is used in 

undergraduate courses as a vehicle for teaching systems programming. 

This book has been written with several distinct purposes in mind. Firstly, it 

aims to provide an introduction to the language for people who are experienced 

programmers but have not met it before; secondly, it is designed as a handbook 

for established BCPL users; thirdly, it will be valuable for those planning to 

transfer BCPL to a new machine; and last, but by no means least, it contains much 

supporting material for courses concerned with compiler writing. 

In serving these diverse needs, the book includes for the newcomer an informal 

introduction to the language (chapter two) and a chapter on debugging and error 

handling (chapter five). As the user gains experience, the language is discussed in 

greater depth in chapters three and four, and chapter eight forms the reference 

manual. 

We feel that it is necessary to study substantial programs written in a language in 

order to learn how to use the language effectively and to develop a good 

programming style. For this reason a number of extended examples have been 

included in the book. In particular, the whole of chapter six is devoted to a 

description of the BCPL syntax analyser, which is a carefully written program that 

well exhibits the power of the language. 

Finally, chapter seven addresses portability issues, outlining the mechanism 

used for transferring the BCPL compiler to a new machine. 

IX 
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1 

The BCPL philosophy 

1.1 Introduction 

The language BCPL (Basic CPL) was originally developed as a compiler-writing 

tool and, as its name suggests, is closely related to CPL (Combined Programming 

Language) which was jointly developed at Cambridge and London Universities. 

CPL is described in Barron etal. [1], BCPL adopted much of the syntactic richness 

of CPL, and strives for the same high standard of linguistic elegance; however, in 

order to achieve the efficiency necessary for systems-programming, its scale and 

complexity is far less than that of CPL. The most significant simplification is that 

BCPL has only one data type - the bit-pattern - and this feature alone gives it a 

characteristic flavour which is quite different from that of CPL and most other 

current programming languages. 

BCPL has proved itself to be useful as a compiler-writing and systems-pro¬ 

gramming tool. It has been implemented on a wide range of computers, both 

large and small, and has been used for research and teaching computer science as 

well as systems programming. 

1.2 The object machine 

BCPL has a simple semantic structure which is based on an idealised machine. 

This design was chosen to make BCPL both portable and easy to define accurately. 

The most important feature of the idealised object machine is its store, which 

consists of a set of numbered storage cells arranged so that the numbers labelling 

adjacent cells differ by one. Each storage cell holds a bit-pattern, called simply a 

value. All storage cells are of the same size (a constant of the implementation, 

which is usually between 16 and 36 bits). A value that can be stored in a cell is the 

only kind of object that can be manipulated directly in BCPL, and every variable 

and expression in the language will always evaluate to one of these values. 

Values are used by the programmer to model abstract objects of many different 

kinds, such as numbers, truth values, strings and functions. Many basic operations 

on values are provided. One of these, of fundamental importance in the object 

machine, is indirection. This operation takes one operand which is interpreted as 

1 



2 The BCPL philosophy 

an integer and it yields the contents of the storage cell labelled by that integer. This 

operation is assumed to be efficient and, as will be seen later, the programmer may 

use it freely in his BCPL program. 

1.3 Variables and manifest constants 

A variable in BCPL is defined to be a name which has been associated with a 

storage cell. It has a value, the contents of the cell, which can be changed by an 

assignment command during execution. Almost all forms of definition in BCPL 

introduce variables, the only exception being the manifest constant declaration. 

A manifest constant is the direct association of a name with a value. This 

association takes place at compile time and remains constant throughout execu¬ 

tion. There are many situations where manifest constants can be used to improve 

readability with no loss of runtime efficiency. 

1.4 Data types 

The unusual way in which BCPL treats data types is fundamental to its design. It is 

convenient to distinguish between two classes of data types, namely, conceptual 

types and internal types. The conceptual type of an expression is the kind of abstract 

object the programmer had in mind when he wrote the expression. It might be, 

for instance, a time in milliseconds, a weight in grams, a function to transform feet 

per second to miles per hour, or it might be a data structure representing an 

employee record. It is, of course, impossible to enumerate all the conceptual types 

that could exist and it is equally impossible to provide for all of them within a 

programming language. The usual practice when designing a language is to select 

from the conceptual types a few basic ones and provide a suitable internal 

representation together with enough basic operations. The term internal type 

refers to any one of these basic types, and the intention is that all the conceptual 

types can be modelled effectively using the internal types. A few of the internal 

types provided in a typical language are real, integer. Boolean, character, label, 

function, etc. 

Much of the flavour of BCPL is the result of the conscious design decision to 

provide only one internal type, namely the bit-pattern, which we simply refer to as 

a value. In order to allow the programmer to model any conceptual type, many 

useful primitive operations have been provided. For instance, the ordinary 

arithmetic operators + , -, *, and / have been defined in such a way as to model the 

integer operations directly. One may think of these operations as ones which 

interpret their operands as integers, performing integer arithmetic; alternatively 

one may think of them as operations which work directly on bit-patterns and just 

happen to be useful for working with integers. This latter approach is closer to the 

BCPL philosophy. Although the BCPL programmer has direct access to the bits 
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comprising a value, the details of the binary representation used to represent 

integers are not defined and he would lose machine independence if he per¬ 

formed non-numerical operations on values he knows to represent integers. 

Standard relational operators have been defined and a complete set of bit- 

manipulation operations provided. In addition, there are some stranger bit- 

pattern operations which provide ways of representing functions, labels, vectors 

and structures. All these operations are efficient and each can be translated into 

just a few instructions for most machines. 

The most important effects of designing the language in this way can be 

summarised as follows: 

1. There is no need for type declarations in the language, since the internal 

type of every variable is already known. This helps to make programs concise and 

also simplifies problems such as the handling of actual/formal parameter cor¬ 

respondence and separate compilation. 

2. It gives the language nearly the same power as one with dynamically varying 

types, and yet retains the efficiency of a language (like Fortran) with manifest 

types. Although the internal type of an expression is always known by the 

compiler, its conceptual type can never be. It may, for instance, depend on the 

values of variables within the expression, such as the value of an index to an 

element of a vector, since such elements are not necessarily all of the same 

conceptual type. It should be noted that in languages (such as Algol) where the 

elements of arrays must all have the same type, one needs some other linguistic 

device in order to handle dynamically varying data structures. 

3. Since there is only one internal type in the language there can be no 

automatic type checking, and it is possible to write nonsensical programs which 

the compiler will translate without complaint. This disadvantage has to be 

weighed against the simplicity, power and efficiency that this treatment of types 

makes possible. 

1.5 Syntax of BCPL 

One of the design criteria of BCPL was that it should be a useful systems- 

programming tool and it was felt that high readability was of extreme importance. 

The readability of a program largely depends on the skill and style of the 

programmer; however his task is simplified if he is using a language with a rich set 

of expressive but concise constructions and if all the syntactic details of the 

language have been carefully thought out. 

Readability is aided by using a character set which contains both capital and 

small letters. Many implementations expect capital letters to be used in reserved 

words, but allow lower-case letters to be used in user-introduced names for 

contrast. Any number of characters can be used in an identifier and all are 

significant. 



4 The BCPL philosophy 

The structure of a BCPL program can be simple and direct. The programmer is 

able to retain explicit control at all times. The compiler treats the program simply 

(and often naively), and the object code produced is always a direct result of what 

the programmer writes, without the introduction of hidden overheads. 

In BCPL there are three basic commands: assignments, routine commands and 

jumps. However, there are a large number of syntactic constructions to control 

the flow of control in an algorithm, considerably reducing (to zero in many cases) 

the need for labels and goto-commands, and consequently improving readability. 

The purpose of a declaration in BCPL is threefold: (a) to introduce a name and 

specify its scope; (b) to specify its extent; (c) to specify its initial value. The scope of a 

name is the textual region of program in which it may be used to reference the 

same data item; this region is usually a block or the body of a routine. The extent of 

a variable is the time through which it exists and is associated with a storage cell. 

In BCPL, variables may be divided into two classes: 

1. Static variables. The extent of a static variable is the entire execution time of 

the program. The storage cell is allocated prior to execution and continues to exist 

until execution is complete. 

2. Dynamic variables. A dynamic variable is one whose extent starts when its 

declaration is executed and continues until execution leaves the scope of the 

variable. Dynamic variables are usually necessary when using routines recursively. 

The class of variable depends on the form of declaration used. There are six 

ways of declaring static variables and four ways of declaring dynamic variables. 

An expression is used primarily for the computation of the value that it yields and 

is syntactically distinct from a command whose purpose is the effect that it has, such 

as the updating of a variable by assignment, when it is executed. There is a 

corresponding distinction between functions and routines, namely that a function 

application is an expression and yields a value, whereas a routine call is a command 

and does not. Since a function is so similar to a routine in most other respects, the 

word procedure is used to mean either in contexts where the distinction is 

unimportant. All procedures may be used recursively, and in order to allow for 

this and yet maintain very high execution efficiency, there is the restriction that the 

free variables of a procedure (i.e. variables declared outside it) must be static. 

1.6 Modularity 

With efficient procedure calls, it is good practice to design programs in a modular 

fashion. For example, each module could contain the procedures operating on a 

conceptual data type, through which all manipulations would be performed, 

without fear of the inefficiencies this approach often brings with it. BCPL uses a 

form of static storage, called the global vector, which allows separately compiled 

modules to reference and call each other and to share data. This facility is not 

unlike the Fortran Common storage area. In general, the combination of these 
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features leads to a better programming style and eases the programming 

management problems. 

Separate compilation also provides the basis for library facilities. Most imple¬ 

mentations provide a set of precompiled procedures, each associated with a 

separate location in the global vector. The compiler itself knows nothing of the 

procedures contained in the runtime system, yet all the user has to do is to ask the 

compiler to scan a standard file of global declarations. 

1.7 Portability 

The compiler itself is written in BCPL and has been transported from machine to 

machine many times. It is easy to write portable BCPL programs, if a few simple 

guidelines are followed (see chapter four). The compiler is written to operate in 

three phases; the end product of the first two is a machine-level program which 

operates on the idealised BCPL machine. The third phase has to be rewritten for 

each implementation and translates the program for the idealised machine into 

one for the available hardware. In addition a small runtime system (possibly as 

small as 100 machine instructions) has to be written. 

The specially written third phase of the compiler can be compiled and run on an 

existing BCPL implementation and, when preceded by the first two phases on that 

machine, results in a cross-compiler. The full compiler can now be recompiled, 

resulting in a proper compiler for the new machine. Implementing BCPL on a 

new machine takes, typically, about two or three man-months. 

Most of the standard BCPL library is also written in BCPL, so this too can be 

used as a basis for compatibility between machines, and for the inevitable 

installation-dependent extensions. 

1.8 Summary 

The way in which BCPL treats data types allows the programmer great freedom to 

organise his symbol tables, property lists, tree structures and stacks in the most 

suitable fashion for his own application. Admittedly BCPL only provides the basic 

operations and the programmer has to write his own manipulative routines, but 

this is easy to do and he does not have the disadvantage of having to use a system in 

which inappropriate design decisions have already been made. The philosophy of 

BCPL is not one of the tyrant who thinks he knows best and lays down the law on 

what is and what is not allowed; rather, BCPL acts more as a servant offering his 

services to the best of his ability without complaint, even when confronted with 

apparent nonsense. The programmer is always assumed to know what he is doing 

and is not hemmed in by petty restrictions. Machine-code programmers tend to 

like the way in which BCPL combines the advantages of a high-level language with 
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the ability to use addresses and bit-patterns without invoking a great weight of 

expensive machinery. 

When planning and writing software in a commercial environment, it is 

necessary to compromise between the quality of a product and its cost. The quality 

is affected by many factors such as its size, its speed and efficiency, the usefulness of 

its error diagnostics, its robustness and reliability, the accuracy and quality of its 

documentation, its maintainability, and in some cases its flexibility and mobility. 

Only the first two of these are directly improved by writing in a more efficient 

language, while the others tend to suffer from this because the software is more 

difficult to write. Although efficiency is important in a systems-programming 

language, this consideration should not wholly dominate its design. The 

compromise in the design of BCPL between efficiency and linguistic effectiveness 

is near optimal for a wide range of software applications, especially those in which 

flexibility is required. 



2 

The main features of BCPL 

2.1 Introduction 

This chapter is a self-contained introduction for the newcomer to the language. 

Not all the features are covered, and many fine details are skipped. The aim is to 

present the major constructs and to communicate the flavour of programming in 

BCPL. Chapter eight provides a precise and complete, though necessarily terse, 

specification of the language. You will also need the local implementation notes 

giving details of dialect representations and how to compile and run BCPL 

programs. 

This chapter assumes that you are familiar with job control, file creation and 

editing, etc. in your local operating system and that you have programmed in 

some language before. 

2.2 A simple BCPL program 

A BCPL program consists of one or more procedure declarations (which are 

similar to the functions and subroutines of Fortran or the procedures of Algol or 

PL/I), perhaps preceded by some global-variable declarations. One of the pro¬ 

cedures must be called START, and program execution commences by calling it. In 

turn it will usually call on other procedures to perform its job, some in the same 

program, others included from libraries. A very simple declaration of START 

might be as follows: 

LET START() BE WRITES("Hello, World") 

The straightforward way of communicating data between procedures is by 

using parameters. The parameter list is placed in parentheses following the 

procedure’s name in the declaration. Here START is a procedure with no 

parameters, indicated by ( ). 

A procedure is invoked by writing its name, followed by the list of arguments in 

brackets. There is no call-statement as in Fortran or PL/I. WRITES is a library 

procedure which will print a string on the terminal (or some other output device. 

7 



8 Main features 

e. g. a printer for offline jobs etc., depending upon the implementation environ¬ 

ment). In this case it prints 

Hello, World 

To make it into a complete program, it is necessary to declare the library 

procedures at its head. These declarations are usually stored for your convenience 

on a system library file, which you incorporate into your program using a 

get-directive. So the complete program would be as follows: 

GET "LIBHDR" 

LET STARTQ BE WRITES("Hello, World") 

The actual name of the file will, of course, depend on your 

installation. 

2.3 Variables and variable declarations 

This program adds three integers and prints their sum: 

GET "LIBHDR" 

LET START() BE 

$( LET A, B, C, SUM = 1, 2, 3, 0 

SUM := A +B + C 

WRITES("Sum is ") 

WRITER(SUM) 

$) 

The section brackets $ ( and $) enclose the statements of a procedure, and are, in 

many respects, like begin and end in Algol. Statements are usually separated 

either by a semicolon or by the end of the line. 

The let-declaration is used to introduce program variables as well as pro¬ 

cedures. All variables must be declared before they are used (i.e. their names 

written in commands etc.). The declaration 

LET A, B, C, SUM = 1, 2, 3, 0 

introduces four new local variables A, B, C and SUM and initialises them to contain 1, 

2, 3 and zero respectively. 

Variable names may have any number of characters, chosen from A-Z, 0-9 and 

. (full stop), but must start with a letter. The basic words of the language (e.g. LET) 

cannot be used as variable names. Various implementations allow lower-case 

letters and/or use an underline character instead of a full stop. 
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BCPL does not have the type-association conventions for variables that are 

found in many languages (e.g. integer, real, character, Boolean). It is up to you 

what ‘type’ of information you store in the variables of your program. However, 

many of the various operations that you can perform will make assumptions about 

the contents of your variables. For example, the +, as in A+B, adds together the 

contents of the variables A and B, making the assumption that they contain 

integers and that an integer result is required. 

Assignment commands are much the same as in Algol, Fortran or PL/I. Note 

the use of : =. For simple arithmetic expressions, the usual operators (+, - etc.) are 

used. A longer treatment of expressions is given later; meanwhile be guided by 

your experience with other programming languages. 

The library procedure WRITEN outputs its parameter as an integer. 

BCPL programs are written in free format. You can put several statements on a 

single line, or use several lines for a single statement. Semicolons must be used to 

separate statements on a single line to resolve ambiguity and can also be included 

for greater clarity, ‘end of line’ has the effect of terminating a statement if 

syntactically this is possible. So if you want to split a statement over two lines, then 

the split may be at any point where the statement could not be terminated, for 

example after a + or -. Spaces and newlines may not be inserted in the middle of 

names or operators. However, as a matter of style, they should be used frequently 

to enhance readability. 

Comments are introduced by the character pair //. All characters from (and 

including ) // up to the end of the line are ignored by the compiler. 

2.4 Constants 

We have already seen decimal integer constants in the previous example. Constants 

may also be expressed in octal, introduced by the character #. Thus #777 is an octal 

constant, with decimal value 511. 

A character constant is enclosed in single quotes and denotes the implementation- 

dependent small-integer value that represents that character. For example, 

'A' =65 on an ASCII implementation, and 'A' = 193 on an EBCDIC imple¬ 

mentation. Ordinary variables may be used to store character constants, for 

example 

LET CHAR = ‘A’ 

A special mechanism is used to represent hard-to-get-at or invisible characters. 

This uses an asterisk followed by a printable character. The most common use of 

this mechanism is * IT to represent the ‘end of line’ character. This is a special 

character which is produced at the end of each line of input and, when printed, 

moves the printing unit to the start of the next line. Other uses of the asterisk 

notation are *P for ‘end of page’, *S for space, *T for tab, *B for backspace, * 1 for 
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single quote mark and * * for * itself. Your implementation may have even more 

(depending on the character set used). 

A valuable feature of BCPL to help you write in a clear programming style is the 

ability to use names to represent constants. These are called manifest constants. The 

value associated with a manifest constant stays fixed, so you cannot assign to it. The 

compiler knows the value, so it can generate efficient code. No extra store is 

wasted. Above all, it is much clearer to see what a program is doing if you use a 

well-chosen name instead of an an arbitrary number. Here is a skeleton of a 

program, not using manifest constants: 

LET DAY = 0 

DAY := 1 

DAY := 5 

We are obviously considering different days, but are they days of the week, or 

days since some specific date? All becomes clear when we rewrite the program 

using manifest constants: 

MANIFEST $( SUNDAY = 0; MONDAY = 1; TUESDAY = 2 

WEDNESDAY = 3; THURSDAY = 4; FRIDAY = 5 

SATURDAY = 6 

$) 
LET DAY = SUNDAY 

DAY := MONDAY 

DAY := FRIDAY 

You should also make less mistakes when using manifest constants. In many of 

the program extracts used as examples throughout this book we will use manifest 

constants, assuming that appropriate declarations have been made earlier in the 

program. 

Exercises I 

1. Which of the following are legal BCPL variable names? 

DAY LET 2ND TAX. RATE TAX-RATE .END 
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2. Which of the following are legal BCPL constants? 

178 ' *T' 'TT' '*' 26 #178 #0 'A' '' ' ' ' ' ' ' ’ 

3. Correct the syntax errors in the following program: 

LET START BE 

$( LET A B C := 1, 1 A’ , 'B', #37 

MANIFIST $( SUM = A $) 

SUM = SUM + A + B - C 

LET RESULT = 2 * SUM 

WRCH RESULT $) 

$) 

4. Write a program to print your name, and run it on your local BCPL system. 

2.5 More input and output 

The BCPL input/output (I/O) system is based on the idea of streams. A BCPL 

stream should be regarded simply as a sequence of characters. There is no record 

structure superimposed by BCPL. Normally one input stream and one output 

stream are selected at any moment. All I/O operations take place on the currently 

selected input or output stream. However, the mechanism for specifying the 

original source and final destination is very much dependent on the operating 

environment. Usually a suitable set of defaults is provided so that simple use of 

BCPL has expected results. 

To override these defaults, the SELECTINPUT library routine is used to select 

the stream from which subsequent input is to be taken. Similarly, SELECTOUTPUT 

selects the stream to which subsequent output is to be sent. 

RDCH and WRCH form the basis of the BCPL I/O library. RDCH fetches one 

character from the currently selected input each time it is called, and returns that 

character as its value. RDCH yields the character ' *H1 at the end of each input line. 

When it reaches the end of the selected input, it returns a special value repre¬ 

sented by the manifest constant END0TREAMCH (which will be defined in LIBHDR). 

WRCH outputs one character to the currently selected output each time it is 

called. Successive calls on the output library procedures will place more characters 

onto the current line until the character ' *N' is transferred. Thus 

WRITES("This is") 

WRITES(" line one*N") 
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will produce 

This is line one 

whereas the procedure call 

WRITES("Each*Nword*Non*N'a*N'line*R" ) 

will produce 

Each 

word 

on 

a 

line 

Similarly, on input, characters are read one at a time as you ask for them. In 

illustrating this we introduce the input library function READN, which ignores all 

layout characters on the input stream up to the first digit. It then reads a number 

(terminated by a non-digit). The sequence 

A := READN() 

B := READN() 

C := READRO 

has the same effect if the input takes the form 

12 3 

or 

1 

2 

3 

When designing an interactive program, you should check whether your local 

BCPL system (and/or operating system) will permit character-by-character inter¬ 

action. On many systems, a complete line has to be typed before your BCPL 

program is allowed to read any characters. Equally, on output, you may find that 

each line is buffered by the system and will only appear on the terminal after your 

program has output a newline character. 
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2.6 The if-command, relational operators, compound commands 

The main condition-testing statement in BCPL is the if-command: 

C := RDCH() 

IF C='?' THEN WRITES("Why did you type a questionmark?*N" ) 

The condition to be tested is any expression. The word THEN is followed by a 

command. The expression is evaluated, and, if its value is true the command is 

executed. The representation of ‘true’ and ‘false’ is implementation dependent. If 

your expression does not evaluate to either true or false, then it is implementation 

sensitive whether the command is executed or not. 

The character = is one of the relational operators in BCPL. Here is the complete 

set: 

= equal to ( . EQ. to Fortraners) 

-1= not equal to 

>= greater than or equal to 

<= less than or equal to 

> greater than 

< less than 

The relational operator performs an arithmetic comparison of the two expres¬ 

sions either side, and yields a Boolean result (true or false). You can write extended 

tests in BCPL, e.g. 

C := RDCH() 

IF '0'<=C<='9' THEN PROCESS.DIGIT( ) 

Here the procedure PROCESS . DIGIT is called if the character read was a digit. 

(N.B. this assumes that the digits have numerically consecutive representations in 

the character set). 

Tests can be combined with the operators 8c (and), | (or) and -i (not). For 

example we can test whether a character is a space, tab or newline with 

IF C='*S' | C='*T' | C='*N' THEN . . . 

BCPL provides a complementary command to IF, called UNLESS. This has the 

same format, but the command following is executed if the expression evaluates to 

false. 
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You can store truth values in any BCPL variable, so the following construct is 

both valid and meaningful: 

T := A > B 

IF T THEN WRITES("A was greater than B when T was set") 

One of the most useful features of BCPL is that one form of command is a set of 

statements enclosed in a $ ( $ ) pair. As a simple example, suppose that we wish to 

ensure that A is bigger than B, as part of a sort procedure. The interchange of A 

and B takes three statements in BCPL, which can be grouped together as a unit by 

$ ( and $): 

IF A < B THEN 

$( LET T = A 

A := B; B : = T 

$) 

As a general rule in BCPL, anywhere that you can write a simple command, you 

can use a compound command or a block. The set of statements enclosed in $ ( $ ) 

is called a compound command unless the statements start with some declarations, in 

which case the whole thing is called a block. 

$ ( and $) are called section brackets. BCPL has a feature which allows section 

brackets to be tagged with identifiers. The compiler attempts to match the tags on 

corresponding pairs of opening and closing section brackets. If necessary, a 

tagged closing section bracket will automatically cause extra section brackets to be 

inserted immediately preceding it, closing off inner sections. 

The ability to replace single statements by complex ones at will is one feature 

that makes BCPL much more pleasant to use than, say, Fortran. Logic (like the 

exchange in the previous example) which would require GOTOs and labels in 

Fortran can, and should, be written in BCPL without any, using compound 

commands and blocks. 

Compound commands should not be allowed to grow too large. Your pro¬ 

gram’s comprehensibility can often be increased by using more procedures and 

fewer blocks provided that the names of the procedures are chosen carefully. 

Every few lines of a properly constructed program will have a name which states 

its purpose. If your program seems to take the form of just a large number of 

blocks, then look at it carefully to see if parts of it can be logically separated. 

2.7 Repetitive commands 

BCPL has a range of repetitive commands. First we introduce WHILE and 

REPEATWHILE. The following is an extract from the READN library routine 
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(described in detail in chapter four): 

WHILE ' 0 ' <=iCH<= ' 9 ' DO 

$( SUM := 10 * SUM + CH - '0' 

CH := RDCH() $) 

The while-command is a loop whose general form is 

WHILE expression DO command 

Its meaning is 

(a) evaluate the expression 

(b) if its value is true, execute the command and go back to (a) 

Because the expression is tested before the command is executed, the command 

can be executed zero times. This feature is often desirable. As in the if-statement, 

the expression and the command can both be arbitrarily complicated. In the 

example, CH is tested for a character value representing a digit. If so, the 

accumulated number value is multiplied by 10 and the numerical value of the digit 

added in. The next character is read, and the process repeated for as long as the 

‘next’ character satisfies the test for a digit. 

Sometimes it is desirable to perform the testing after the execution of the 

command, not before, ensuring that the command is obeyed at least once. For this 

we can use REPEATWHILE, as in this extract, also from READN: 

CH := RDCH() REPEATWHILE CH='*S' | 

CH=' *T' | 

CH=' *N' 

The general form of the repeatwhile-command is 

command REPEATWHILE expression 

Its meaning is 

(a) execute the command 

(b) evaluate the expression, if it is true then go back to (a) 

In this extract, each character is tested for *S, *T or *N after it has been read 

from the input. If the test succeeds then another character is read. This is used in 

READN to ignore leading layout characters. 
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There are three other looping commands with similar formats: 

UNTIL expression DO command 

command EEPEATUNTIL expression 

command REPEAT 

The until- and repeatuntil-commands act similarly to while- and repeatwhile- 

commands, except that they loop if the expression is false. The statement 

command REPEAT 

is equivalent to 

command REPEATWHILE TRUE 

This construction is in practice very useful when used in conjunction with various 

loop-exiting facilities (described later). An example of this is given in section 2.12. 

2.8 The for-command 

The for-command includes the initialisation and increment parts of the loop 

together at the start of the loop. The two alternative forms are 

FOR N = expression 1 TO expression2 BY constant-expression 

DO command 

and 

FOR N = expression 1 TO expression2 DO command 

A new variable N is declared and initialised to expression 1. It is then tested against 

expression2 to see if the for-command should be terminated. If not, the command 

is executed and N is incremented by constant-expression (assumed equal to 1 if not 

present). The test is then performed again, and so on. 

Several properties of FOR should be noted. Firstly, the step-length must be a 

constant (or constant-expression). Secondly, N can be used within the controlled 

command (you can assign to it if you really want to - this will interfere with the 

number of times the loop is executed) but it cannot be accessed outside the whole 

construction. It is a new variable (different from any other variable N in the 

program) and it exists only for the duration of the for-command. It is referred to 

as the controlled variable. Thirdly, expression 1 and expression2 are evaluated only 

at the beginning of the command, not each time round the loop. Fourthly, if 
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constant-expression is positive, then the test is made to see if N is greater than 

expression2, but if constant-expression is negative, the test is made to see if N is 

less than expression2. 

2.9 Arithmetic 

The arithmetic operators are (multiplication), / (truncating integer 

division), and the remainder (or modulo) operator REM. 

FOR I = 0 TO COUNT DO 

$( IF I REM 8=0 THEN WRCH('*N') 

WRITEN(I) 

$) 

In this example a newline is output every eight times round the loop for layout 

purposes. Integer representation is implementation dependent, and overflow in 

arithmetic operations is ignored in BCPL. All the arithmetic operators work on 

integers and the results of / and REM are implementation dependent unless both 

operands are positive. 

2.10 TEST and UNLESS; conditional expressions 

The test-command is a variation of the if-command, allowing you to specify one of 

two alternative commands to be obeyed. Here are the two commands for 

comparison: 

IF expression THEN command 1 

TEST expression THEN command 1 ELSE command2 

There is also a third from: 

UNLESS expression DO command2 

The effect of these is as follows: The expression is evaluated. A true evaluation 

results in command 1 being executed (for IF and TEST), whereas a false evaluation 

results in command2 being executed (for TEST and UNLESS). Thus to set X to the 

minimum of A and B we may write 

TEST A < B THEN X := A ELSE X := B 

The words THEN and DO are synonyms, and usually may be omitted. 
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BCPL provides an alternative form of conditional which is often more concise. 

It is called the conditional expression as it is a conditional which produces a value, 

and it can be used anywhere an expression is allowed. The value of 

A<B -> C, D 

is C if A is less than B, otherwise it is D. The general form is 

expression 1 -> expression2, expressions 

This means 

(a) evaluate expression 1 

(b) if expression 1 is true, then the value of the whole conditional expression is 

expression2, otherwise it is expression 3. 

To set X to the minimum of A and B we can now write 

X := A<B -> A, B 

This can be extended in an obvious manner to find the minimum of A, B and C, i.e. 

X := A<B -> A<C -> A, C, 

B<C -> B, C 

In the following example, which is an extract from the WRITEF library routine, 

it is desired to set N to the integer value represented by the hexadecimal character 

in CH: 

N := ' 0' <=CH<='9' -> CH - ' 0' , 

10 + CH - 'A' 

If N contains a digit, then the required value is obtained by subtracting the value of 

the character ’ 01, otherwise it is obtained by adding 10 and subtracting the value 

of the character ' A' . 

Test-commands can be used for constructions that branch in one of several ways 

and then rejoin ( a common programming structure) as follows: 

TEST . . . 

THEN . . . 

ELSE TEST . . . 

THEN . . . 

ELSE TEST . . . 

THEN . . . 

ELSE . . . 
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The conditions are tested in order and exactly one alternative is executed. This 

will be the first one whose TEST . . . THEN is satisfied. When this alternative 

has finished, the next statement to be executed is the one after the one following 

the final ELSE . If no action is to be taken should none of the tests be satisfied, 

then the final TEST . . . THEN . . . ELSE should be changed to 

IF . . . THEN . . . 

As a final example of the use of TEST and IF, the following extract from the 

BCPL syntax analyser (described in full in chapter six) checks that tagged section 

brackets are correctly matched: 

TEST TAG = WORDNODE 

THEN NEXTSYMB() 

ELSE IF 10RDN0DE=NULLTAG THEN 

$( SYMB i=0 

SYNREP0RT(9) $) 

Exercise II 

1. (a) Write a BCPL program that will copy input to output on a character-by¬ 

character basis. 

(b) Modify your program to condense multiple spaces into a single space and 

multiple newlines into a single newline. 

(c) Modify your program so that trailing spaces are removed and blank lines 

omitted. 

2. Write a program to merge two input streams of sorted numbers. 

3. Write a program fragment that has the same effect as the for-command, but 

using LET and UNTIL. Check your answer with chapter eight, page 152. 

4. What is the effect of each of the following for-commands? 

(a) FOR I = J TO J+2 DO J := J + 1 

(b) FOR I = 5 TO 0 DO . . . 

(c) FOR I = -5 TO -3 DO . . . 

(d) FOR 1=1 TO 5 DO I := I + 1 

5. Is the following BCPL program,ambiguous? 

IF A THEN TEST B THEN IF C THEN P( ) ELSE Q() 

Under what conditions is the call on: (a) P executed; (b) Q executed; (c) both P 

and Q executed; (d) neither P nor Q executed? Write these conditions as BCPL 

expressions. 
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2.11 Vectors 

In BCPL, as in many other programming languages, it is possible to set up an 

array of elements accessed using only one variable name. Only one-dimensional 

arrays are provided in BCPL, and they are called vectors. You can make a vector of 

four elements with the declaration 

LET V = VEC 3 

Many programming languages use parentheses or [ ] to enclose subscripts, but 

in BCPL the operator ! is used to provide a compact notation which distinguishes 

subscription from procedure calls. Subscripts begin at zero, and the elements of V 

are 

V! 0, V! 1, V! 2 and V! 3 

The character ! is usually pronounced by BCPL users as ‘pling’ in this context. 

! takes a precedence over other operators, so parentheses are required if the 

subscript is a compound expression. For example 

V! I+J does not mean V! (I+J) 

but(V!I)+J 

As an example, the following routine outputs a positive number, storing the 

individual digits in a vector: 

LET WRITEPN(N) BE 

$( LET T = VEC 20 

LET 1=0 

T!I, N, I : = N REM 10, N/10, 1+1 REPEATUNTIL N=0 

FOR J = I - 1 TO 0 BY -1 DO WRCH(T!J + '0') 

$) 

Note that in the LET V = VEC . . . declaration you write the maximum 

subscript. This must be a constant, so you can’t let your program choose the size of 

the vector. You can, however, write a constant-expression, involving constants and 

some operators. For example, if ROWS and COLUMNS are manifest constants you 

can write 

LET V = VEC ROWS*COLUMNS 

As with ordinary variables, you can imagine that the contents of the vector’s 

elements are of any type you choose. However, note that, unlike ordinary 
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variables, there is no way of initialising the contents of a vector when it is declared. 

In general each element of a vector will contain non-zero rubbish until you assign 

a value to it. 

Another warning about vectors: you should not try to use the same name for a 

vector and an ordinary variable, and should only use the vector’s name without a 

subscript with the greatest of care (e.g. passing the vector as a parameter as in 

Algol) until you understand the section on pointers in chapter three. It is both 

legal and full of pitfalls for the unwary. 

2.12 Procedures 

Suppose we wish, as part of a large program, to form a histogram of the integers 

less than 100 (terminated by a negative integer) on some input stream. Let us also 

count all larger integers. Since this is an isolated part of the program, good 

practice dictates making it a separate procedure. Here is one way: 

GET "LIBHDR" 

MANIFEST $( NUM = 100 $) 

LET STAHTO BE 

$( LET HISTOGRAM = VEC NUM 

COUNT(HISTOGRAM, NUM) // form histogram 

WRITES( . . . ) 

$) 

AND COUNT(ARRAY, SIZE) BE 

$( FOR I = 0 TO SIZE DO 

ARRAY! I :=0 // all counts set to zero 

$( LET C = READN() // read next number 

IF C < 0 RETURN // input terminated by neg number 

IF C>SIZE THEN C := SIZE // deal with large numbers 

ARRAY!C := ARRAY!C + 1 

$) REPEAT 

$) 

We have seen many examples of calling procedures, so let us concentrate on 

how to define one. COUNT has two parameters, ARRAY and SIZE. These are called 

the formal parameters of the procedure. When COUNT is called, they will be passed 

the values of the corresponding actual parameters used in the call. Note that we do 

not have to mention that ARRAY is a vector. The fact that we use it as such within 

the procedure is good enough for BCPL. However, it is the programmer’s 
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responsibility to make sure that if a parameter is treated as a vector inside a 

procedure, then a vector is provided in the procedure call. 

The effect of the parameter-passing mechanism in BCPL is that simple variables 

are passed by value, and vectors by reference. Thus the routine COUNT can access 

the elements of the vector HISTOGRAM by using the ! operator on the parameter 

ARRAY. However, SIZE can be regarded as a local variable, initialised to the value 

of the corresponding actual parameter (in this case 100, the value of NUM). The 

actual parameters can, in general, be expressions. 

The return-command simply says ‘go back to the calling procedure’. If RETURN 

is the last command of the procedure, then it can be omitted. 

The LET procedure-definition 

AND procedure-definition 

construction is simply a method of defining two procedures simultaneously. 

Usually you can access only those procedures declared either simultaneously with 

or prior to the calling procedure. In this case we used AND and so were able to call 

COUNT from within START, although the procedure was defined textually later in 

the program. 

If we wish to return a value at the end of forming the histogram, then COUNT has 

to become a function, and is defined as a value-returning object producing a 

result: 

LET COUNT(ARRAY, SIZE) = VALOF 

$( LET NUMBER = 0 

FOR 1=0 TO SIZE DO ARRAY II := 0 

$( LET C = BEADNO 

IF C<0 RESULTIS NUMBER 

IF C>SIZE THEN C := SIZE 

ARRAY IC := ARRAY IC + 1 

NUMBER := NUMBER +1 // count the numbers 

$) REPEAT 

$) 

The block following VALOF is executed in the normal way until a command of 

the form 

RESULTIS expression 

is met. This expression then produces the value for the whole function. In fact the 

construction 

VALOF $( ... 

RESULTIS expression 

$) 
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can be used to produce a value anywhere a value is needed (e.g. on the right-hand 

side of an assignment command). An expression can be used as the body of a 

function definition; for example, to define the function which yields the minimum 

of three values we can write 

LET MIN(A, B, C) = A<B -> A<C -> A, C, 

B<C -> B, C 

The parameter-passing mechanism in BCPL contains a subtlety which can trap 

unsuspecting programmers used to other programming languages. As simple 

variables are passed by value, a copy is made of the actual parameters for the called 

procedure to use. Assigning to the formal parameters will not change the values of 

the original variables specified as actual parameters. This is similar to the Algol 

call-by-value mechanism, and in contrast to the Fortran parameter-passing 

mechanism. 

BCPL has been carefully designed so that function and routine calls bring little 

overhead. This is a by-product of the lack of parameter checking and the fact that 

all parameters are passed by value. By using routines properly, you will increase 

readability, save space taken up by compiled code, produce better modularity, all 

at little cost in terms of runtime overhead. 

2.13 Strings, and vectors of characters 

Text may be stored in a vector using one element for each character. However, we 

usually need only between 6 and 9 bits for each character while a store location 

may be anything from 16 to 64 bits wide (both character size and word size depend 

on implementation). Plainly it is far more economical to store text by placing 

several characters in each word. BCPL strings are stored in this way. 

In BCPL, we use double quotes around a character string. The compiler 

permanently allocates a vector of store into which it packs the string. The BCPL 

value of the string is, in fact, the address of the first word of the vector. This value 

can be assigned like any other. Thus 

S := "My string" 

WEITES(S) 

has the same output effect as 

WRITES("My string") 

Sometimes it is necessary to access the individual characters of a string, and you 

will find a pair of library procedures called GETBYTE and PUTBYTE are provided 
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to help you. Alternatively you can use UNPACKSTRING to lay a string out in a 

vector one character to a word, and PACKSTRING to pack it up again. After 

unpacking your string, you will discover that the first word contains a count of the 

number of characters in the string proper, which starts at the second word. 

As an example, we give the library routines WRITES, UNPACKSTRING and 

PACKSTRING: 

LET WRITES(S) BE 

FOR I = 1 TO GETBYTE(S, 0) DO WRCH(GETBYTEf S, I) ) 

LET UNPACKSTRINGf S,V) BE 

FOR I = 0 TO GETBYTE(S, 0) DO V!I := GETBYTE(S.I) 

LET PACKSTRING(V, S) = VALOF 

$( LET N = ?! 0 A #XFF // extract least significant 8 bits 

LET SIZE = N / BYTESPERWOHD 

S!SIZE := 0 // pack out last word with zeroes 

FOR I = 0 TO N DO PUTBYTE(S, I, V!I) 

RESULTIS SIZE 

$) 

For both PACKSTRING and UNPACKSTRING two parameters are needed, one 

giving the string to be operated upon, the other a vector for the result. From this 

example you will have noticed that packed strings are stored in perfectly ordinary 

vectors. If you quote a string in your program, then the compiler automatically 

allocates a vector for it. However, you have to supply your own vectors for the 

PACKSTRING and UNPACKSTRING procedures. 

The following extract from the BCPL lexical analyser is used as part of the table 

initialisation program (for full details see chapter six). It takes a string of the form 

" W0RD1/W0RD2/W0RD3/ . . ./WORDn//", and, for each word in turn, forms a 

string and calls the lookup procedure LOOKUPWORD. The vectors CHARV and 

WORDY are assumed declared, and the original string is identified by WORDS. 

LET I, LENGTH =1,0 

$( LET CH = GETBYTE(WORDS, I) 

TEST CH='/' THEN $( IF LENGTH = 0 THEN RETURN 

CHARV!0 := LENGTH 

WORDSIZE := PACKSTRING(CHARV, WORDV) 

LOOKUPWORD() 

LENGTH := 0 $) 

ELSE $( LENGTH := LENGTH + 1 

CHARV!LENGTH := CH $) 

I := I + 1 

$) REPEAT 



Main features 25 

Exercises III 

1. Complete the histogram program outlined in section 2.12, and run it on 

some suitable data. 

2. Explain what happens on the call of PACKSTRING from within the following 

program fragment: 

LET V = VEC 3 

V! 0, V!1, VI2, V!3 := 3, 'A', 'B' , 'C' 

PACKSTRING(V, V) 

The final word containing the string is padded out with zeroes. This allows 

strings to be compared for equality on a word-by-word basis. (For an example of 

this, see LOOKUPWORD in the BCPL lexical analyser, described in chapter six.) 

Discuss whether it is worth modifying the definition of PACKSTRING so that it acts 

sensibly for the above program. 

3. Write a program to read some suitable piece of text and count the occur¬ 

rences of A, AN, AND, ANDY, THAN, HAND and HANDY, treating each as (a) distinct 

words; (b) character strings (i.e. so that HAND increments the counts for A, AN, AND 

and HAND). 

2.14 Local and global variables 

Consider the following pair of procedures: 

LET F() BE 

$( LET X, Y = 0, 0 

GO 

$) 
AND G() BE 

$( LET X = 0 

$) 

The three variables X and Y in F, and X in G are local to their own procedures. 

The X in F is unrelated to the X in G. Furthermore all three variables have no 

memory from one call to the next of the encapsulating procedures and are 

initialised to the stated value on each entry. They are often referred to as dynamic 

variables. 



26 Main features 

A further crucial point to note is that the dynamic variables of one procedure 

cannot be used in an embedded procedure: 

LET F() BE 

$( LET X = 0 

LET G() BE 

$( . 

$) 

$) 

// X cannot be used in here 

// but it can here 

The technical way of expressing this rule is to say that BCPL does not support 

dynamic free variables; in other words, inner procedures are not permitted to use 

the dynamic variables of outer procedures. You should probably avoid using 

inner procedures in your initial attempts at using BCPL, and so avoid this problem 

altogether. 

As opposed to local variables, global variables (globals) are potentially available to 

all procedures. The BCPL mechanism is to store all global variables in a special 

global vector, in a fixed place in store. The purpose of the global vector is to permit 

communication between separately compiled modules of a BCPL program (see 

chapter three). The program refers to the global variables by name in the usual 

way, but first there must be a declaration specifying which name goes with which 

location within the global vector. For this purpose, the locations in the global 

vector are numbered (usually from zero). In each installation some globals will be 

reserved for library procedures, so by convention you should avoid allocating 

these to your own global variables. Typically you can use locations from 100 

upwards in the global vector. 

To associate a name with a global-vector location (and hence create a global 

variable), a global-declaration is used. The declaration: 

GLOBAL $( NUMBER:100; COUNTER:101 $) 

associates NUMBER and COUNTER with locations 100 and 101 in the global vector. 

They may subsequently be used anywhere in the block containing the global- 

declaration, including embedded functions and procedures. The newcomer to 

BCPL is advised to declare all global variables together at the start of the program. 

Note that if you declare a variable called NUMBER as a local variable of some block 

then you introduce a new variable, rendering the global of that name temporarily 

inaccessible. 

Much of the contents of the standard header file (here called LIBHDR) contains 

the global-declarations for the standard precompiled library files. The exact 

mechanism for combining program modules and the library procedures is 

obviously dependent on the operating environment. 
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In some implementations, extra directives are required to state which library 

procedures should be incorporated; e.g. a program might start 

GET "LIBHDR" 

NEEDS HDCH, WECH, WRITES 

Without such a mechanism, the whole of a possibly substantial library would have 

to be incorporated into every program. Check with your installation notes for 

details. 

2.15 The switchon-command 

The switchon-command provides an elegant and efficient alternative to multiway 

testing using if- or test-commands. When tests are like this, 

TEST C=1 a' THEN . . . 

ELSE TEST C='b' | C='C' THEN . . . 

ELSE . . . 

where we are testing a computed value against a series of constants, then the 

switchon-command is often clearer and gives better compiled code. This example 

can be rewritten 

SWITCHON C INTO 

$( // the body of a SWITCHON is always a compound command 

// ; you cannot put declarations here!!! 

CASE 'a' : ... 

ENDCASE 

CASE 'b1 : 

CASE ' c' : ... 

ENDCASE 

DEFAULT: : ... //if none of the cases match 

ENDCASE 

$) 

// ENDCASE brings us here , 

The case-labels are used to label the code defining the various actions we want. 

Readability is often enhanced by using manifest constants in case-labels. The label 

DEFAULT is used if none of the other cases contain the computed value of the 

expression following SWITCHON. DEFAULT is optional; if it is not there, and none 

of the cases match, then control passes directly to the next command after the 

switchon compound command. 
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The endcase-command says that the work of the switchon-command has been 

completed, and control is to be passed to the next command after the compound 

command. It is used because the case labels do not have the effect of terminating 

the previous case, i.e. after the statements at one label, control continues on to 

those textually following unless action is taken explicitly to escape. A further 

consequence of this simple approach is that it is possible to have multiple cases on a 

single statement, and it is possible to use other methods of transferring control 

other than ENDCASE. 

The switchon-command is one of BCPL’s aids to writing readable programs. 

However, it can be spoilt if each case label is attached to a large number of 

commands. Nine or ten lines of code should be the maximum. Where more are 

required, then they should be embedded in a routine which is called from the 

case-label (even if this is the only call to it in the whole program). 

As an example, we give extracts from the compiler routine NEXTSYMB, which 

reads the next symbol from the input, setting the global SYMB to represent the 

symbol type. For the full text, see section 6.1. 

LET NEXTSYMB() BE 

$(1 NLPENDING := FALSE 

$(2 . . . 
SWITCHON CH INTO 

CASE ' *p' : 

CASE ' *N' : LINECOUNT := LINECOUNT + 1 

NLPENDING := TRUE // ignorable characters 

CASE 1 *t ' : 

CASE ' *S' : RCH() HEPEATWHILE CH='*S' 

LOOP 

CASE '0' : CASE '1':CASE '2':CASE '3':CASE '4' : 

CASE ' 5' : CASE 16':CASE '7':CASE '8':CASE ' 9' : 

SYMB := S.NUMBER 

READNUMBER(10) 

RETURN 

CASE ' [ ' 

CASE SYMB 

CASE ' ] ' 

CASE SYMB 

$)S 

$)2 REPEAT 

RCH() 

$)1 

= S.LPAREN; BREAK 

= S.RPAREN; BREAK 
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2.16 Conclusion 

This ends the discussion on the main features of BCPL. You now know enough 

to write quite substantial programs, and it would probably be a good idea if 

you paused long enough to do so. The next chapter will discuss some more 

constructions, useful but not essential. 

Exercises IV 

1. Write a program to show that the 13th day of the month falls more often on a 

Friday than any other day of the week. The 1st of January 1973 was a Monday. 

You should aim at producing the clearest possible program, not the fastest. (Hint: 

there are an exact number of weeks in four centuries.) 

2. Write a program to generate primes in the range 1-1000 using the sieve of 

Eratosthenes. (Initialise a vector to contain the integers 1,2,..., 1000. Consider 

each element in turn. If it is as initialised then it is prime, so print it and cancel all 

its multiples in the vector. If it is cancelled then it is not prime.) 

3. Write a BCPL program to generate the first twenty terms in the Fibonacci 

series (1,1,2, 3, 5, 8,..., each term being the sum of the previous two terms), and 

to compute the ratio R of any two consecutive terms. ‘Plot’ the successive values of 

R on the output device. 
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Advanced facilities 

In this chapter we will be discussing representations as well as facilities, and we 

shall be revisiting some of the features discussed in chapter two. 

3.1 Pointers 

A pointer in BCPL is the address of a word of store. It is rare indeed when we care 

what the specific address itself is, but pointers are commonly used to get at the 

contents of store. The unary operator S is used to produce the address of a 

variable. Thus 

LET A, B = 0, 0 

B : = 3 A 

puts the address of A into the variable B. A has not changed in any way, and we can 

still access A by writing its name. However we can now also access A indirectly by 

applying the ! operator to B. 

LET A, B, C = 0, 0, 0 

B ! — at A 

C := 1B 

The construction ! B means ‘access the object pointed to by B’. The effect here is 

that we copy the contents of A into C. We could also change the contents of A by 

accessing it indirectly via B: 

LET A, B = 0, 0 

B := 3A 

!B := 5 

Here the effect is to put the value 5 into A, as it is the object pointed to by B. 

In BCPL it is defined that consecutive words of store have numerically consecu¬ 

tive addresses. Thus if we know that B points to the first of several consecutive 

locations, then B+l will point to the second location, B+2 to the third etc. 

30 
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With this knowledge, we can explain BCPL vectors more fully. The declaration 

LET V = VEC 5 

establishes (i) a vector of six consecutive locations, and (ii) a separate variable V 

which is initialised to the address of the first location of the vector. Figure 3.1 

shows a diagrammatic represention of this. 

V! 0 

V! 1 

V! 2 

V! 3 

V! 4 

V!5 

Fig. 3.1 

V points to the first element of the vector. This means that the value given by 

V +1 is the address of the second element of the vector. Hence to access this 

element we should write 

!(V+1) 

This would work, but, simply because this is rather cumbersome, the shorthand 

V! 1 is used. 

In this example, V behaves like any other local variable, the main difference 

being that it is initialised by the compiler as a pointer. Hence its value can be copied 

into another variable (which as a result will also point to the same vector), or passed 

as a parameter to a procedure. 

3.2 The use of pointers 

There are two other important uses of pointers to represent BCPL language 

constructs. The first is that the value of a string is a pointer to the vector in which 

the string is stored. Thus we could write the assignment command 

VEGETABLE := "carrot" 

and then 

WRITES(VEGETABLE) 



32 Advanced facilities 

Note that in compiling a string the compiler does not allocate an extra variable to 

hold the address of the first word of store containing the string. 

A table is an initialised, permanently allocated vector. The value of a table is a 

BCPL pointer to the first element of the vector. For example, in the hexadecimal 

number output library routine (see chapter four), we find 

WRCH((N&15)!TABLE 

'0','1','2','3','4','5','6','7', 

'8' ,'9',1 A' ,’B' ,'C','D' , ' E' ,'F' ) 

which outputs the hexadecimal representation of the value stored in the bottom 

four bits of N. 

Manifest constants are particularly well suited to describing data-structure 

layouts. Some consecutive words of store may represent a node in a data structure, 

with various words within the node serving different purposes (e.g. a chain 

pointer, a count, a value, an age). With suitable manifest constants we may write 

constructions such as 

CURRENTITEM!AGE CURRENTITEM!CHAINPOINTER 

where CURRENTITEM points to the node. A popular fashion (noting that ! is 

commutative) is to write these in reverse order, reading the character ! as ‘in’; e.g. 

AGE!CURRENTITEM reads as ‘AGE in CURRENTITEM’ 

Remember that there is no runtime overhead incurred in using manifest 

constants, and that the extra typing effort is repaid many times in saving 

subsequent debugging and the efforts of others trying to understand your 

program. 

3.2.1 Example: the compiler tree-structure 

An example of the use of pointers to manipulate data structures other than arrays 

is the tree-structure representation of a program established by the BCPL 

compiler (see chapter six for more details). Each node in the tree consists of several 

consecutive words of store. The first word contains identifying information 

(represented in the program as a manifest constant), and the remaining words 

contain appropriate values or pointers to other nodes. 

For example, the tree representing the namelist ABC, PQR, XYZ is shown in 

figure 3.2 
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Fig. 3.2 

The function to construct a namelist is 

LET RNAMELISTf) = VALOF 

$( LET A = RNAME() // returns a pointer to a S. NAME node 

UNLESS SYMB = S.COMMA RESULTIS A 

NEXTSYMB() 

RESULTIS LIST3(S.COMMA, A, RNAMELIST()) 

LIST3 is defined as 

LET LIST3(X, Y, Z) = VALOF 

$( LET P = NEWVECf2) // a function which allocates a vector 

P!0, P!1, P!2 := X, Y, Z 

RESULTIS P 

Details of how to allocate space (i.e. the implementation of NEWVEC) are discussed 

in chapters four and six. 

3.2.2 Example: matrix storage 

As a sophisticated example, we can establish the structure of a two-dimensional 

matrix within a vector. Assuming an MxN matrix, we can allocate the first M 

locations of a sufficiently large vector to contain pointers to the M individual rows. 

Each row has N elements, and successive rows are stored consecutively in the 

vector following the table of pointers. We assume that M and N have been declared 

as manifest constants. A vector of sufficient size is declared and initialised as 
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follows: 

LET V = VEC M*(N+l)-l 

FOR I = 0 TO M-l DO V!I := V + M + (N * I) 

If M = 2 and N = 4, the matrix is represented diagrammatically as in figure 3.3. 

pointer vector matrix elements 

(not BCPL notation) 

V [ 0, ,0] 

V[0, .1] 

V [ 0 , ,2] 

Vf0, .3] 

V[l, ,0] 

V[1, .1] 

V[1, ,2] 

V[1, .3] 

To access the I, Jth element, we first access the Ith element of the vector V; this 

gives us a pointer to the Ith row. We then access the Jth element of this row, and so 

this element can be accessed by the expression V! I! J. 

This exercise demonstrates two points: 

(i) Multilevel use of pointers is straightforward. You can construct arbitrarily 

complicated data structures within a vector (and across several vectors if you 

take care), but both the establishment and manipulation of these data 

structures are your responsibility. With all but the simplest structures it is 

good practice to write procedures and functions to perform commonly used 

manipulations. 

(ii) As a special case of (i), you can represent multi-dimensional matrices. If you 

wish, you can store sparse or triangular matrices efficiently. 

3.3 Handling conceptual data types 

Whenever you invent a new conceptual type that cannot be represented by a single 

BCPL value (e.g. a symbol table, or a bit string), then you should develop a set of 

routines and functions which perform all required operations on it. The internal 
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representation of your new conceptual type, in terms of data structures, pointers, 

bit-packing and the use of other conceptual types, need only be known within this 

set of routines. 

By way of example, you may well need to use a symbol table. You decide upon 

the operations required (e.g. does symbol S exist within the symbol table, insert 

symbol S with associated value T in the symbol table, remove symbol S, associate a 

new value with S, produce a list of symbols with value T) and the internal workings 

(use of vectors, pointers, hashcoding for table lookup etc.). The routines and 

functions may, in turn, call on other routines and functions which deal with the 

abstractions of ‘symbol’ and ‘list’. The net effect is that users of the symbol table are 

neither interested in, nor care about, the internal workings of the symbol table, or 

of symbols themselves. A program change could be made (e.g. a new hashing 

function or table lookup technique employed) without any other routines being 

affected. 

Further reading on this topic may be found in Parnas’s paper on modular 

decomposition [9] and in the descriptions of Simula [3] and CLU [7] which both 

contain language constructions to support, in effect, data abstraction. 

Exercise V 

Design a multi-precision integer arithmetic package. Your package should 

include the procedures PLUS, MINUS, TIMES, DIVIDE, PRINT and READ, 

together with procedures to convert between single length and multiple length 

integers. Consider carefully various possible representations (e.g. making maxi¬ 

mum use of all the bits in each word, as against storing values up to a convenient 

power of ten in each word). Hence, by implementing sufficient of your package, 

calculate and print the decimal value of 22048— 1. 

3.4 Procedure parameters 

The BCPL procedure call uses the call-by-value technique for parameter passing. 

Thus, when you make a call such as F (X), it is the value of X that is passed into F 

and not its address and so there is no direct way to alter X from inside F. On the 

inside of the procedure, the values of the parameters at the moment of call are 

assigned to the corresponding formal parameters as declared in the procedure 

declaration. To all intents and purposes, the formal parameters of the procedure 

are simply local variables. 

We discuss now what happens to pointers. Assume that we have a procedure P 

with one formal parameter A, i.e. P is declared by 

LET P(A) BE . . 
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Consider the case where V is declared (outside P) by 

LET V = VEC 30 

The value passed to the procedure P by the call 

P(V) 

is the value held in the variable V which, assuming that no assignments have been 

made to it, is a BCPL pointer to the zeroth' element of the vector. This value is 

copied into the formal parameter A, and thus the elements of the vector may be 

accessed from within P by writing 

A!0, All, A! 2, etc. 

If we wish to change the contents of a dynamic variable declared outside a 

procedure, then we have to pass a pointer to it. This could be done either by 

storing the pointer in a static variable (a back door method), by passing the value of 

another variable which already holds its address (this is in effect what happens 

with vectors), or by using the a construction to pass its address. 

Thus to interchange the contents of two variables we could write a procedure 

LET SWAP(PX,PY) BE 

$( // PX and PY point to the two variables 

// to be interchanged 

LET TEMP = IPX // value of X 

IPX := ! PY // Y copied into X 

!PY := TEMP // and original X into Y 

$) 

and to call SWAP, we pass the addresses of the variables 

SWAP (a) A, SB) 

3.5 Recursion 

All procedures in BCPL may be used recursively, i.e. every procedure may call itself 

(either directly or by calling other procedures which in turn call the original 

procedure). Every time a procedure is called, a new set of local variables (and 

formal parameters) is established. Of course you are not obliged to design 
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recursive procedures, but sometimes a problem has a ‘back-to-front’ recursive 

solution. An example is a procedure to print decimal numbers. Such a procedure 

(let’s call it PRINT) might be called to print, 1643, say. The easiest method of 

obtaining the digits is to split the number into two parts using the operators REM 

and /; i.e. 

1643 REM 10 = 3 

1643 / 10 = 164 

We thus obtain the digit 3, which can easily be converted into a character code and 

printed. We then repeat the process on 164, and so on. Unfortunately, this 

produces the digits in the wrong order. 

However, this difficulty can be averted neatly by using recursion. As before, the 

number is split into two parts, but this time the procedure is called recursively to 

print 164 before printing the character 3. The procedure will be called two more 

times recursively to print 16 and 1. On this final call, the number to be printed is 

less than 10, and so can be printed as a single digit, thus further recursion is not 

needed. The innermost call will print 1, and will then exit to the previous level of 

recursion, which will print 6, and so on. Our PRINT procedure thus becomes 

LET PRINT(N) BE 

$( IF N > 9 DO PRINT(N/10) // print all digits 

// except the last one 

WRCH('0' + N REM 10) // print last digit 

$) 

Every time PRINT is called, a new copy is made of the value to be printed. On 

inner (recursive) calls, this will be 1/10 of the immediate outer value. Thus if we 

looked at all the program variables at the moment that WRCH was first called after 

PRINT had been asked to print the number 547, we would find three variables 

called N associated with the three recursive calls on PRINT. The innermost would 

contain 5, the next would contain 54, and the original would contain 547. Further 

reading on the topic of recursion may be found in Barron [2]. 

As a final point, tests on compiled BCPL programs have shown that dynamic 

variable allocation (the mechanism implementing recursion) is usually more 

efficient (with savings of up to 20% on program size, store usage and program 

speed) than static allocation, particularly on hardware with small-size addressing 

fields and few machine registers. This applies even if you do not take advantage of 

recursion. For this you have to pay the price of the very local nature of local 

variables. With good programming style this is no great hardship and, indeed, the 

restriction prevents some of the side-effects which are often the source of 

hard-to-find program bugs. 
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3.6 Scope rules', who knows about what 

If you imagine a complete BCPL program module as being conceptually enclosed 

in a $ ( $) pair, i.e. as the inner part of a block, then the scope rules can be easily 

explained. 

Identifiers declared at the head of a block can be used in the same and 

subsequent declarations and throughout the rest of the block, with the exception 

that procedure parameters, simple variables and vectors cannot be used inside 

embedded procedures. The following example illustrates this rule: 

Scope (i.e. is accessible) 

p(x) BE P X G Y Q R 

GLOBAL $( G:100 $) + + 

LET Y = X + + + + 

LET QO BE + + 

$( 

H() + + + + 

$) 
AND H() BE + + + + 

$( 

QO + + + + 

$) 
+ + + + + + 

$) 

The controlled variable in a for-command (e.g. the variable I in FOE I = 1 TO 5 

DO. . .) may only be referenced from within the controlled command. 

3.7 Other controls 

BCPL recognises that there are occasions in which the need arises for greater 

flexibility in the construction of repetitive commands. Firstly, we consider 

termination. The test for termination is carried out either at the head or at the tail 

of the repetitive command. Sometimes it is easier to carry out a test for termina¬ 

tion from within the body of the repetitive command. Often the body contains a 

branching construction (e.g. a switchon-command) in which some of the branches 

should lead to termination. The break-command provides a simple construction 

that meets this need. 

For example, the debug package (see chapter five) contains a routine that reads 

in a number in a given radix. In this we wish to read digits (including A, B, C, D, E 
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and F for hexadecimal numbers) until we meet a character not representing a digit 

in the radix. The routine is as follows: 

LET RDN(RADIX) = VALOF 

$(1 LET A,SW = 0, FALSE 

$( LET D = -1 

IF '0'<=CH<='9' DO D : = CH-'0' 

IF ' A'<=CH<='F' DO D := 10+CH-'A' 

UNLESS 0<=D<RADIX BREAK 

SW := TRUE 

A := A*RADIX + D 

CH := RDCH() $) REPEAT 

UNLESS SW DO ERROR("BAD NUMBER") 

RESULTIS A $)1 

The first character is already in the global CH. The main part of the routine 

iterates until a character not within the range of the radix is read. SW will be false if 

no number is present, but is set TRUE if the loop repeats at least once. 

The break-command says ‘jump out of the smallest enclosing repetitive com¬ 

mand’. It works inside the body of any of the repetitive commands FOR, WHILE, 

UNTIL, REPEAT, REPEATWHILE, REPEATUNTIL. You should take care to 

remember that only part of the repetitive command was executed when BREAK 

was encountered. 

There are other ways of exiting from the middle of a loop. For example, this 

need is often coupled with the need to exit from an enclosing procedure. This can 

be met by using RETURN or RESULTIS. 

BCPL provides yet another control facility - the loop-command. This allows 

you to skip the rest of the commands in the repetitive command, but remain inside 

it. In the case of FOR, the controlled variable is incremented and, conditionally, 

the repetitive command repeated. Within UNTIL, WHILE, REPEATUNTIL and 

REPEATWHILE, the use of LOOP transfers control to the point at which the test is 

made. For REPEAT, the repetitive command just starts again. 

LOOP is used in situations where you discover early on in a repetitive command 

that the rest of the command can be skipped and so the next thing to do is to test 

whether to execute the command again or not. 

3.8 Bit-operations 

BCPL has several operators for logical bit-operations. For example 

X := X &. #377 

forms the bitwise logical ‘and’ of X and the octal constant 377, effectively retaining 
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only the last eight bits of X. The full set of operators is 

<< left shift 

» right shift 

-i logical-not (bitwise inversion) 

A logical-and 

| logical-or 

NEQV logical-not-equivalence (exclusive-or) 

EQV equivalence 

e.g. #42 | #20 evaluates to #62 

#42<<3 evaluates to #240 

#42»2 evaluates to #10 

Care has to be taken with the BCPL precedence rules (see chapter eight). The 

precedence order of the logical operators is 

most binding «, » (but see chapter eight) 

-1 

A 

I 
least binding EQV, NEQV 

Thus 

A + B » C | DAE 

is equivalent to 

(( A + B ) » C ) | (DAE) 

If you are simply joining conditionals together by using the logical operators, 

e.g. in 

IF X>Y A A<=B THEN . . . 

then brackets are not necessary. However, until you feel really confident about the 

BCPL precedence rules it is safest to use brackets liberally. Indeed, it is a good 

habit to use brackets, remembering that your program might be read (and 

altered) by someone less familiar with BCPL. Note the following typical case 

where the use of brackets is necessary: 

IF ( A A #377 ) = 'P' DO 
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Without brackets, the compiler would read this as 

IF A & (#377 = ’P') DO ... 

As in this example, the operators |, ->, EQV and NEQV are often used in 

BCPL to manipulate truth values. If the expression so formed is producing a truth 

value within the testing part of an IF, UNLESS, WHILE, etc., then evaluation is 

strictly left-to-right and evaluation ceases once the truth value is determined. For 

example, if B( X) is a function which produces a Boolean result, then it will never 

be called in the following test: 

IF 1<2 | B(X) DO . . . 

Exercise VI 

Write a BCPL function with one parameter which returns as result the number 

of bits set to 1 in the parameter. 

3.9 Goto-commands and labels 

BCPL does have goto-commands and labels. However, most of the time goto- 

commands are not needed. Your program can almost always be more clearly 

expressed by the other repetitive commands (FOE, WHILE etc.), by using IF and 

TEST constructs with compound commands and by using the ENDCASE, BREAK 

and LOOP control-transfer primitives. 

A label declaration is written as an identifier followed by :. For most purposes it 

can be treated naively as in other programming languages, to identify a point in 

the program text. Strictly speaking, BCPL uses an indirect interpretation. The 

label identifier is associated with a static location (i.e. it can be treated as a static 

variable), which the compiler initialised to contain a BCPL value representing a 

point in the (compiled) program text. This value can thus be assigned to other 

variables, passed as a parameter (or indeed mutilated) like any other BCPL value. 

The construction 

GOTO expression 

means ‘evaluate the expression, and transfer control to the point in the program 

represented by its value’. Usually, the expression takes the form of a variable 

declared by a label declaration. Note that the static variable itself can be assigned 

to, which, with careful use, provides a dynamic jump facility (which should be 

annotated very carefully), or, with careless use, provides ready chaos. 
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3.10 Typeless names - or context type determination 

You can use BCPL in the manner described in the previous chapter, using 

different variables for the different objects of your program without thinking too 

much what the compiler makes of it all. However, there are some consequences of 

the BCPL approach, described in chapter one, which you can use (or abuse) once 

you become more fluent in the language. If you find that you cannot accept the 

BCPL philosophy about type, then you should probably use a systems-program- 

ming language with compile-time type checking, such as C or Pascal. 

When you declare an identifier in BCPL, you are stating its name, how it is to be 

stored, and possibly indicating an initial value. You do not say how you intend to 

use it. The compiler may restrict your use of an identifier by various scope rules, 

but that is a consequence of the implementation storage strategy. 

The value of an identifier is always representable as a pattern of bits (how many 

bits depends upon the implementation). The interpretation to be placed on the 

bit-pattern in no way depends upon how the identifier was declared, but only on 

how it is used in your program, i.e. what operators, functions etc. you apply to it. 

The corollary to this is that you can apply any operator (other than a) to 

absolutely any named object in your BCPL program. This gives you at one and the 

same time great freedom and great responsibility. 

3.11 Procedures as values 

®CPL has been carefully designed so that it is possible to represent a procedure by 

a simple BCPL value, which we will call the procedure value. In many implemen¬ 

tations this is the procedure’s entry address. The translated procedure is stored in 

a sequence of locations, which start at a known address. The procedure value is 

placed in a variable bearing the name of the procedure. In other words, the 

variable can be thought of as containing the start address of the procedure. If the 

name of the procedure coincides with that of a global variable then this variable is 

used to store the procedure value, otherwise a new static variable (see section 3.12 

for details of static variables) is used. For example, 

GLOBAL $( STAET:1 $) 

LET START() BE 

$( ... $) 

causes global variable number I to be initialised to the procedure value of START. 

This is the only way of initialising global variables prior to executing the 

program. 
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Procedure values can be assigned to ordinary variables, as in the following 

extract from the library routine WRITEF (described in chapter four): 

$(3 LET F, ARG, N = 0, T!0, 0 

P := P + 1 

$( LET CH = GETBYTE(FORMAT, P) 

SWITCHON CH INTO 

$( . . . 
CASE 'S': F := WRITES; GOTO L 

CASE 'C': F := WRCH; GOTO L 

$) 

L: F(ARG, N); . . . 

The variable F is set to contain the procedure value for one of several output 

procedures, depending upon the control character in CH. The appropriate 

procedure is subsequently called to generate the desired output. 

A further consequence is that a procedure may be passed as a parameter to 

another procedure, or returned as the result of a function call. 

The general format of a procedure call is 

expression( parameters) 

Usually we use the declared procedure name as the expression, but there is 

nothing to prevent us from writing an arbitrarily complicated expression. The 

expression must be enclosed in brackets in all but the simple cases, as a procedure 

call takes precedence over all other operators. 

3.11.1 Example: OS6 stream structure 

As an example, we describe the use of procedure values in the stream structure of 

OS6, which is an operating system written in BCPL by Stoy and Strachey [12]. In 

OS6, the programmer can manipulate streams of input and output. The function 

call NEXT(S) can be applied to any input stream S, and produces the next 

character. Similarly OUT(T,X) outputs the character X to the output stream T. 

Some streams are bi-directional. 

All the relevant information concerning a particular stream S is stored in a 

vector (to which S points). The first few items in this vector are procedure values. 

The vector takes the form shown in figure 3.4, 
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where NEXT. SOURCE is the function which implements NEXT for S (it may well be 

a different function for different streams) etc. Stream-creating functions them¬ 

selves take the form 

LET INPUTFROMTTY = FALOF 

$( LET V = NEWVEC(5) // claiming a vector from a 

// freestore package 

V!0 := NEXTTTY // the procedure value for NEXTTTY 

V!1 := STREAMERROR // for an input stream 

RESULTIS ¥ 

$) 

Thus the procedure value held in the zeroth element of S represents the 

function which implements NEXT for stream S . NEXT is thus defined as 

LET NEXT(S) = (S!0)(S) 

Similarly, OUT is defined as 

LET OUT(S, X) BE (S!1)(S, X) 

OS6 allows streams with special properties (e.g. removing surplus layout 

characters, or using translation tables) to be established using the system-provided 

streams. The reader is referred to Stoy and Strachey [13,14] for further details of 

this interesting operating system. 

3.12 Static variables 

The global vector is an example of permanently allocated storage in BCPL, as 

opposed to the temporarily allocated storage of local variables. It is primarily 
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designed for linking independently compiled modules, but when permanently 

allocated storage is required within a single module then the static declaration is to 

be preferred. This introduces the names and initial values of the static variables. 

Static variables are initialised before the program starts execution. An example of 

the use of a static variable is 

LET NEXTIDO = YALOF 

// generates a sequence of integer identifiers 

$( STATIC $( NUMBER = 0 $) 

NUMBER := NUMBER + 1 

RESULTIS NUMBER //delivers 1 on first entry 

// 2 on second entry, etc. 

$) 

3.13 Separate compilation facilities 

You should familiarise yourself with the facilities in BCPL for separate compila¬ 

tion of physical source modules (some installations refer to these as segments). If 

any source BCPL program or module occupies more than four or five pages of 

lineprinter listing, then it should be considered for splitting into separate pieces. 

An even better approach is to anticipate this; it is easy to forget how rapidly a 

program can grow. When you first design a program, design in separate 

compilation from the beginning (which is also a good programming discipline) 

even if the modules are only half a page long. Put the global and manifest 

declarations required throughout the program into a separate file and use GET at 

the head of each module. Declarations global to several routines but local to a 

module, however, should not be allowed to find their way into this file. 

The global vector forms the basis of the independent compilation facilities of 

BCPL. In contrast to local variables, if you declare a procedure with the same 

name as a global variable, then this global variable becomes associated with the 

procedure by the compiler setting it to contain the procedure value (typically the 

address of the procedure in the computer’s program memory). The global 

variable should therefore not be used for anything else. So if we declare a 

procedure called COUNTER somewhere in the program after declaring a global 

variable COUNTER, then this procedure is available to all parts of the program. We 

can, in fact, divide our program into two pieces (which we will call modules) which 

can be compiled separately. Both modules start with the same global declarations, 

and thus can access the same global variables. However, only one module contains 
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the procedure to be associated with COUNTER; i.e. Module A (compiled on 

Tuesday): 

GET "LIBHDR" 

GLOBAL $( NUMBER: 

LET START() BE 

$( . . . 
NUMBER := 543 

COUNTER() 

$) 

Module B (compiled on Wednesday): 

GLOBAL $( NUMBER:100; COUNTER:101 $) 

LET COUNTER() BE 

$( . . . 
FOR I = 1 TO NUMBER DO // using the global variable 

$) 

100; COUNTER:101 $) 

// call the global procedure 

We could then load the two modules side-by-side and run the complete 

program on Thursday. 

Exercises VII 

1. Write a program to generate a random binary tree of 100 nodes, each 

containing a random integer in the range 0 to 5. 

2. Write a program to make a copy of the tree produced by 1 above in such a 

way that identical branches of the tree share the same memory. Print the number 

of distinct nod,es used in this copy. 

3. Write a program to count the number of ways in which eight queens can be 

laid out on a chess board in such a way that no queen is on the same row, column 

or diagonal as any other. 
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The library, language extensions, and machine 

independence 

Most BCPL implementations comprise a set of basic procedures (some written in 

the local assembly language), together with a standard library of procedures 

written in BCPL. The basic procedures provide the means of accessing the 

operating-system functions and machine-level facilities without the programmer 

having to depart from BCPL. 

4.1 Basic input and output procedures 

Available to the program are a set of input and a set of output streams. The 

routine SELECTINPUT is used to select an input stream, from which all 

subsequent input will be taken until the next call of SELECTINPUT. Similarly 

SELECTOUTPUT is used to select an output stream, to which all subsequent output 

will be sent until the next call of SELECTOUTPUT. The argument of SELECTINPUT 

or SELECTOUTPUT is a BCPL value which represents a stream in some implemen¬ 

tation-dependent way. On some implementations, integers are used; however, it is 

more usual for a stream to be represented by a pointer to a data control block 

containing all the information relevant to the stream. 

In many implementations, the association between these values and the physical 

input/output devices, files etc. can be controlled dynamically. To gain access to 

these facilities, procedures with names such as FINDINPUT, FINDOUTPUT and 

FINDFILE are provided as appropriate. On initial entry to a BCPL program, a 

default selection of an input and an output stream will usually have been made by 

the system, and so it is often not necessary to invoke any of these procedures in 

simple programs. 

Single-character input and output is provided by RDCH, the function which 

reads a character, and WRCH, the routine to output a character. If RDCH is called 

when the currently selected input is exhausted, it yields the conventional value 

ENDSTREAMCH. This is a manifest constant whose value is usually — 1, to differen¬ 

tiate it from any valid character. Streams can be closed by using the routines 

ENDREAD and ENDWRITE whose exact effects are implementation dependent. 

47 



48 The library and language extensions 

4.2 Input and output library facilities 

The basic procedures just described provide a level of machine independence on 

which a standardised BCPL library is constructed. The most satisfactory way of 

specifying the library is by describing its implementation in terms of these basic 

procedures. This also demonstrates the typical ways in which they are used. 

4.2.1 Numbers 

LET WRITED(N,D) BE 

$(1 LET T = VEC 20 

AND I, K = 0, -N 

IF N<0 DO D, K := D-l, N 

Til. K, I := -(K REM 10), K/10, 1+1 REPEATUNTIL K=0 

FOR J = 1+1 TO D DO WRCH('*S' ) 

IF N<0 DO WRCH() 

FOR J = 1-1 TO 0 BY -1 DO WRCH(T!J+'0' ) $)1 

This routine outputs N as a signed decimal integer, occupying at least D printing 

positions. The digits are stored in reverse order in the vector T, and the routine 

works with negative values to overcome the problem of negating the largest 

negative number in 2’s complement representation. Note that this routine relies 

upon the correct operation of REM with a negative left operand (strictly speaking 

not defined in BCPL), and that consecutive numerical representation of digits in 

the character code is assumed. 

The routine to output a number in the minimum number of printing positions 

is simply 

LET WRITEN(N) BE WRITED(N, 0) 

The following function reads in a decimal number (possibly preceded by + or 

-), ignoring leading spaces, tabs and newlines: 

LET READN() = VALOF 

$(1 LET SUM = 0 

AND NEG = FALSE 

AND CH = 0 

CH := RDCH() REPEATWHILE CH='*S' | 

CH='*T' | 

CH='*N' 
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SWITCHON CH INTO 

$( CASE : NEG := THUE 

CASE '+': CH := RDCH() $) 

WHILE '0'<=CH<='9' DO 

$( SUM := 10*SUM + CH - '0' 

CH := RDCH() $) 

IF NEG THEN SUM := -SUM 

TERMINATOR := CH 

RESULTIS SUM $)1 

Notice that, on some implementations using 2’s complement representation of 

integers, this function will fail to yield the correct value for the largest negative 

integer. 

The next routine provides octal output: 

LET WRITEOCT(N, D) BE 

$( IF D>1 DO WRITE0CT(N»3, D-l) 

WRCH((N&7) + '0') $) 

If this routine is called, for example, by WRITE0CT( #173, 3) then it calls 

itself recursively with WRITEOCT( # 17,2) and recurses again with 

WRITE0CT(#1,1). In this deepest level of recursion, the parameter D is set to 1, 

and so the routine WRCH is called (for the first time) to output the character 

corresponding to the bottom three bits of N (' 1'). On exit to the middle level of 

recursion, N will contain 17, and so WRCH is called to output the character ' 7' . 

Finally WRCH is called from the outermost level to output the character ' 3' . Thus 

the net effect of the original call is to write out the characters ' 1', 1 7 ' and ' 3' in 

that order. 

A similar routine provides hexadecimal output: 

LET WRITEHEX(N, D) BE 

$( IF D>1 DO WRITEHEX(N»4, D-l) 

WRCH((N&15)!TABLE '0','1','2','3','4','5','6','7', 

4.2.2 Strings 

Exactly how BCPL strings are stored depends, amongst other things, upon the 

implementation word size. This dependency is concealed within the string-access 

procedures GETBYTE and PUTBYTE. The call 

GETBYTE(S, I) 
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obtains the Ith byte of the string S. By convention, byte 0 contains the number of 

characters in the string, which are stored consecutively from byte 1. The call 

PUTBYTE(S, I, C) 

sets the Ith byte of the string S to contain the character C. 

String output is implemented by WRITES defined as follows: 

LET WRITES(S) BE 

FOR I = 1 TO GETBYTE(S,0) DO WRCH(GETBYTE(S,I)) 

GETBYTE(S,0) gives the number of characters in the string, which are then 

accessed by GETBYTE(S,I). Note that, while the number of bytes per word is 

implementation dependent, this is of no interest to the user of GETBYTE. 

The following routine unpacks a string into a vector: 

LET UNPACKSTRING(S, V) BE 

FOR I = 0 TO GETBYTE(S, 0) DO VII := GETBYTE(S, I) 

Note that a vector of sufficient size has to be established before this routine 

is called. The function PACKSTRING performs the inverse operation using 

PUTBYTE: 

LET PACKSTRING(V, S) = VALOF 

$( LET N = V10 & #XFF 

LET SIZE = N/BYTESPERWORD 

S!SIZE : = 0 

FOR I = 0 TO N DO PUTBYTE(S, I, V!I) 

RESULTIS SIZE 

$) 

Note that the result of PACKSTRING is the subscript of the highest element of S 

used. 

4.2.3 Formatted output 

The routine WRITEF provides approximately the facilities of the Fortran WRITE 

statement. BCPL allows procedures to take a variable number of parameters, with 

no predisposition as to type, and so WRITEF is implemented as a library routine, 

and not as a statement of the language. 

Its first parameter is a string, which contains substitution specifications each 

introduced by % followed by details of the printing style. Successive parameters of 
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the call provide successive values to be substituted. The number of parameters 

required depends upon the format string. A typical call of WRITEF is 

WRITEF("Break No %N at %X4*N", BREAKNO, A) 

The ?SN instructs WRITEF to substitute the value of BREAKNO, printed 

as a decimal integer, and %XA the value of A, printed as a four-digit 

hexadecimal number. This call would produce, typically, 

Break No 5 at 03F8 

We now give the text of WRITEF: 

LET WRITEF(FORMAT, A, B, C, D, E, F, G, H, I, J, K) BE 

$(1 LET T = aA 

FOR P = 1 TO GETBYTE(FORMAT, 0) DO 

$(2 LET K = GETBYTE(FORMAT, P) 

TEST K = ’%' 

THEN $(3 LET F, ARG, N = 0, !T, 0 

P := P + 1 

$( LET CH = GETBYTE(FORMAT, P) 

SWITCHON CH INTO 

$( DEFAULT: WRCH(CH): ENDCASE 

CASE ' S' : F = WRITES; GOTO L 

CASE ' C' : F = WRCH; GOTO L 

CASE '0' : F = WRITEOCT; GOTO M 

CASE 'X' : F = WRITEHEX; GOTO M 

CASE ' I' : F = WRITED; GOTO M 

CASE 1 N' : F = WRITED; GOTO L 

M: P := P + 1 

CH:= GETBYTE(FORMAT), P) 

N := 1 0 '<=CH<= ' 9 ' -> CH-' 0 ', 

10+CH-'A' 

L: F(ARG, N)T := T + 1 $)3 

ELSE WRCH(K) $)2 $)1 

T holds the pointer to the store location containing the next parameter to be 

substituted in the format, thus ! T produces the corresponding value. Increment¬ 

ing T advances it to point to the adjacent parameter. The variable F is used to hold 
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the procedure value of the routine to be called to print the value in the specified 

format. Note that using a procedure name without brackets produces the cor¬ 

responding procedure value, and does not invoke it. 

BCPL does not require the number of actual parameters in a procedure call to 

equal the number of formal parameters in its definition. Parameters in excess of 

the number specified in the definition are lost. Hence this definition of WRITEF is 

only valid for calls having up to twelve parameters. Notice also that the call 

F(ARG, N) is valid when F is a monadic routine (such as WRITES) as the value of N 

is superfluous in this case. 

4.3 Miscellaneous 

Often included among the set of basic procedures is the function MULDIV (X, Y, 

Z ). This evaluates (X * Y) / Z without overflow, providing that the correct result 

can be stored within the single word length of the implementation. It does this by 

dividing Z into the double-length product of X and Y. This function is especially 

useful in short word length implementations. 

The following completes the main part of the BCPL library: 

LET RANDOM(N) = 2147001325*N + 715136305 

This is a congruendal pseudo-random number generator. It has the property 

that the bottom n digits go through all 2" possibilities in 2" iterations. Note that, in 

particular, the result is alternately even and odd. The definition given above is for 

32-bit implementations, and the calculation is assumed to be performed modulo 

232. The right-hand bits of the two constants should be used as appropriate for 

shorter word length implementations. A typical use of RANDOM is 

LET RANDNO() = VALOF 

$( STATIC $( SEED =0 $) 

SEED := RANDOM(SEED) 

RESULTIS (SEED»7) & #77 $) 

Notice that this function will produce exactly the same sequence on a 16-bit 

machine as on a 32-bit machine if the constants are truncated to 16 bits. 

4.4 LEVEL and LONGJUMP 

These two routines provide between them the means of transferring control 

across several layers of procedure invocation. We recall that the parameters, the 

dynamic variables and vectors of BCPL procedures are stored using a stack 
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mechanism. Each procedure call results in a new stack frame being allocated to 

hold the dynamic variables etc. of this invocation of the called procedure. A 

procedure may obtain a BCPL value representing its stack frame by calling 

LEVEL(). This value may then be stored, say, in a global variable for later 

reference to the stack frame. 

We recall also that a label in BCPL is, in effect, a static or global variable which is 

initialised to a value representing the point in the program at which it is declared. 

Assume that we have written a procedure P, in which we declare a label L. Within P 

it is sensible to use the command GOTO L to transfer control to L. However, once 

control has passed to another procedure (Q say) the current stack frame will be 

that of an invocation of Q. Thus use of GOTO L within Q will result in a transfer of 

control into the program of P, but using Q’s stack frame, leading to undefined and 

probably catastrophic effects. By contrast, on the normal completion of the body 

of Q, execution will resume at the point in P just after the call of Q with P’s stack 

frame restored appropriately. In some (rare) circumstances (e.g. error handling), 

this is inconvenient, particularly if Q is reached only via several other procedures 

or if the point in P to which we wish to return is not where we left it. The solution is 

to memorise the stack frame of P (say, in the global P. STACKFRAME) and to 

instruct explicitly the BCPL runtime system to reinstate it on jumping to L. The 

routine LONGJUMP is provided for this purpose, and may be called thus: 

LONGJUMP(P.STACKFRAME, L) 

To illustrate a typical use of this facility, we refer to the debug package, 

described in chapter five. This contains, at the outermost level, the declaration of 

two static variables REC.P and REC.L. The main steering routine (DEBUG) is 

structured as follows: 

LET DEBUG() = VALOF 

$(1 ... // declarations 

REC.P, REC.L := LEVEL(), NXT 

NXT: CH := RDCH() 

SW: SWITCHON CH INTO 

$( DEFAULT: ERROR("BAD COMMAND %C”, CH) 

$) 

$)1 

Then come other procedures, which are called from DEBUG under appropriate 

circumstances, which also contain calls of the error routine, for example: 
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ERROR(" BAD NUMBER" ). Finally, the error routine is defined as: 

AND ERROR(S, A) BE 

$(1 NEWLINE() 

WRITEF(S, A) 

NEWLINE() 

UNTIL CH=' *N' DO CH := RDCH() 

LONGJUMP(REC.P, REC.L) $)1 

Thus, on encountering an error, whether simply an unknown command 

detected in DEBUG, or a more subtle error detected in an inner procedure, an 

appropriate error message is output, the remainder of the current line is ignored, 

and control is transferred back into DEBUG to read the next command. A similar, 

but more sophisticated, example of the use of LEVEL and LONG JUMP will be found 

in the BCPL syntax analyser (chapter six). 

4.5 APTOVEC 

The BCPL method of declaring vectors is by using the let-declaration, e.g. 

LET V = VEC 25 

The size of the vector (in this example 26 words are allocated contiguously) must 

be specified at compile-time. This allows the compiler to calculate the exact size of 

the stack frame required for the enclosing procedure. Programmers are thereby 

constrained to ensure that the vectors will always be big enough to cover all 

requirements, even though this may mean wasting space in a majority of circum¬ 

stances. To alleviate this difficulty when it is perceived as being serious, many 

implementations provide a facility which creates a vector whose size may be 

determined dynamically. This facility is provided by the function APTOVEC, 

whose definition is as follows: 

LET APTOVEC(F, N) = VALOF 

$( LET V = VEC N // illegal in BCPL 

RESULTIS F(V, N) $) 

APTOVEC is normally implemented in assembly language, since dynamic vector 

allocation is not permitted in BCPL. It will typically allocate space for the vector V 

on the stack just below the stack frame for the call of F. Thus on exit from F, via 

APTOVEC, to the calling procedure, the vector will be deallocated automatically. It 
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can be used as follows: 

LET START() BE 

$( LET N = READNO 

APTOVEC(MAINPROG, N) $) 

AMD MAINPROG(V, N) BE . . . 

4.6 Freestore management 

Whilst the ability to choose dynamically the vector size alleviates some space- 

management problems, there are circumstances where the allocation of space 

bears no relationship with the flow of control through the procedure structure of a 

program. Under these circumstances the programmer has to be responsible for 

both the allocation and the deallocation of space. The following procedures can be 

used to provide such a facility in the form of a simple freestore-management 

system. This system uses a first-fit algorithm for allocating blocks of variable size. 

It coalesces adjacent free blocks and, although it is not particularly efficient, the 

procedures are compact. 

In an outer block, the programmer declares a vector of suitable size and calls 

INITBLKLIST, e.g. 

LET START() BE 

$( LET FREESTOREVEC = VEC FSVSIZE 

IMITBLKLIST(FREESTOREVEC, FSVSIZE) 

This hands over the vector to the freestore-management system. In this system, 

FSVSIZE must be even. An allocation of space from this area may be made by 

calling the function GETBLK, e.g. 

V := GETBLK(X+Y) 

which returns a pointer to the allocated space. In this particular package, the first 

word of each block supplied is reserved for the package’s use, but the remainder 

may be treated as an ordinary vector. When the space is no longer required, it is 

returned with the call 

FREEBLK(V) 
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The package is defined for a 16-bit machine as follows: 

GET "LIBHDR" 

GLOBAL $( 

BLKLIST:100; GETBLK:101; FREEBLK:102; INITBLKLIST:103 

$) 

MANIFEST $( 

SIZEBITS=#XFFFE; FREEBIT=1 

$) 

LET INITBLKLIST(V,N) BE 

BLKLIST, V! 0, V'.N := V, N+FREEBIT, 0 

LET GETBLK(N) = VALOF // N is the size of the required block 

$(1 LET P, Q = 0, BLKLIST 

N :='(N+1) &. SIZEBITS // round up to next multiple of 2 

$( P := Q 

WHILE (!P&FREEBIT)=0 DO // chain through used blocks 

TEST !P = 0 THEN RESULTIS 0 // end of store reached 

ELSE P := P + ! P 

Q := P // chain to end of this free area 

UNTIL (!Q&FREEBIT)=0 DO Q := Q + !Q - FREEBIT 

$) REPEATUNTIL Q —P>=N // until large enough block found 

UNLESS P+N=Q DO // split block unless exact fit 

PIN := Q-P-N+FREEBIT 

!P := N 

RESULTIS P 

$)1 

LET FREEBLK(P) BE !P := !P | FREEBIT 

Before allocating a block, the package makes sure that its size is a multiple of 2 

(by rounding up). The first word is set to contain the size of the block. Thus all 

allocated blocks have the least significant bit set to zero. This bit is set to 1 

(FREEBIT) when the space is returned. To find a free block of sufficient size, the 

package skips over the allocated blocks until a free block is found. The following 
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free blocks are coalesced and the amalgamated block tested to see if it is of 

sufficient size. If not the process is repeated. If so then it is subdivided (if 

necessary) into the allocated block and a free block. If no large enough block is 

found GETBLK returns zero. 

4.7 The floating-point extension 

Some implementations contain extensions to support floating-point arithmetic. A 

floating-point constant may have one of the following forms: 

i. jEk 

i.j 

iEk 

where i and j are unsigned integers and A is a (possibly signed) integer. The value 

is represented on the IBM 370 as a 32-bit floating-point number. 

The arithemtic and relational operators for floating-point quantities are as 

follows: 

#* #/ 

#+ #- 

#= #-i= 

They have the same precedence as the corresponding integer operations. 

There are, also, two monadic functions FIX(X) and FLOAT(X) for conversions 

between integers and floating-point numbers. A common pitfall is to write -3.1 

when #-3.1 is intended. 

4.8 The field-selector extension 

Some implementations support the field-selector extension. Field selectors allow 

quantities smaller than a whole word to be accessed with reasonable convenience 

and efficiency. A selector is applied to a pointer using the operator OF (or : :). It 

has three components: the size, the shift and the offset. The size is the number of 

bits in the field, the shift is the number of bits between the right-most bit of the 

field and the right-hand end of the word containing it, and the offset is the position 

of the word containing the field relative to the pointer. By convention, a size of 

zero specifies that the field extends to the left-hand end of the word. 

The precedence of OF is the same as that of the subscription operator (!), but its 

left operand (the selector) must be a constant-expression. A convenient way to 
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specify a selector is to use the operator SLOT whose syntax is as follows: 

cconstant expression> ::= SLOT <size>: <shift>: <offset> | 

SLOT <size>: <shift> | 

SLCT <size> 

where <size>, <shift> and <offset> are constant-expressions. Unless explicitly 

specified, the shift and offset are assumed zero by default. Selectors are best 

defined using manifest declarations. 

A selector may be used on the left-hand side of an assignment and in any other 

context where an expression may be used, except as the operand of S. In the 

assignment 

F OF P := E 

the appropriate number of bits from the right-hand end of E are assigned to the 

specified field. When 

F OF P 

is evaluated in any other context, the specified field is extracted and shifted so as to 

appear at the right-hand end of the result. 

On some implementations, fields corresponding to half-words, bytes and 

individual bits are treated efficiently. 

4.9 The infixed byte operator 

The byte handling library procedures GETBYTE and PUTBYTE have been found to 

be so useful that many rJCPL implementations have an infixed operator that 

provides the same facility. The preferred extension uses the operator % giving it 

identical precedence to the indirection operator! . Its use on the left-hand side of 

an assignment invokes PUTBYTE. For example, 

S%I := CH 

is equivalent to 

PUTBYTE(S, I, CH) 

In other contexts, S^I is equivalent to GETBYTE( S, I). 
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4.10 Techniques for machine independence and portability 

Machine independence is easy to achieve in BCPL for the main body of an 

algorithm or program provided that you adopt a simple and clear programming 

style. However, designing for portability does require some care: 

(a) Put all machine-dependent material in one module. This includes all calls 

on standard library procedures, initialisation code where this depends 

upon an external interface (e.g. how options are specified on entry to the 

program), any procedures that will need adapting to use a different word 

size (alternative versions, or readily changed manifest constants should be 

provided). Keep the external (system-dependent) interface as simple and as 

flexible as possible. Note that many computer systems do not permit 

character-by-character interaction on on-line terminals. 

(b) Carefully avoid code which makes use of representation, particularly of 

numbers and of strings. For example, right shift may divide by two on your 

installation, but may not on another. 

(c) Differing word sizes can cause problems. Carefully document all places in 

your program where arithmetic range limitations may apply (e.g. it may be 

in your program that the maximum value of a parameter is the square root 

of the maximum number that can be held in a machine word). Remember 

that more vector space will be needed to pack a character string on a 

small word size machine than on a large one. The manifest constant 

BYTESPERWORD should be used in the appropriate vector declarations. A 

string of ff characters packs into 1 + N/BYTESPERWORD cells. 

(.d) Beware of problems due to differing character sets. Write programs that 

still work even when all lower-case characters are converted to upper-case. 

Make no assumptions about the number of bits in a character. This is 

usually 8, and consequently the longest string is defined to be 255 charac¬ 

ters. Nevertheless, keep strings short. Always use character quotes and 

escapes; never write the installation-dependent value of a character. 
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Debugging and error handling 

Ensuring that a program performs as intended is a problem in any programming 

system. Inevitably, the newcomer to BCPL will also be caught unawares by 

differences of BCPL from his accustomed programming language. In this chap¬ 

ter, we first examine some of the compiler-detected errors, and then discuss the 

techniques available to aid fault detection in programs that compile but do not 

work correctly. We conclude with a list of common mistakes as an aid to 

trouble-shooting. 

5.1 Syntax errors 

Many syntax errors can be easily located with the help of the compiler’s error 

messages. However, it sometimes happens that slips in BCPL programs cannot be 

determined as being erroneous until compilation has proceeded for some dis¬ 

tance. As part of the syntax error reporting, the last-read sixty-four characters of 

the program are printed, nevertheless error messages produced at the moment 

when the error is detected are somewhat imprecise, as the fault could well have 

occurred well prior to the current symbol. We discuss some of the syntactic slips 

which are particularly prone to causing this effect. 

5.1.1 Missing colon in : = 

The compiler reads, for example, A = B (instead of A := B) as the start of an 

expression. Several commands start with expressions and the error is often not 

detected until one or two lines further on, for example if B is a large valof- 

expression. The latest line read, though doubtless syntactically perfect, will be 

displayed as (probably) containing the error. Thus it is always advisable to look 

back in your program for a malformed command. 

5.1.2 Extra semicolons 

A semicolon may be used to separate one command from the next. This is in 

contrast to some other languages where it is used as a terminator. Two consecutive 

fin 
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semicolons is erroneous, and a common error is to put one before the closing $) of 

a compound command or block. These two errors cause the message ‘ERBOB IN 

COMMAND’ to be printed. In fact you hardly ever need to use semicolons. In 

particular, a semicolon may always be omitted if it is the last symbol of a line, and it 

may be omitted in most other contexts. 

5.1.3 THEN or DO needed 

DO is a synonym of THEN, and, like the semicolon, may be omitted except where 

needed to remove local ambiguity. An example of the type of construction where 

it is necessary is 

IP B THEN !P := 0 

It is wise to omit THEN only if it occurs immediately before a command keyword. 

5.1.4 Mismatched section brackets 

This can cause problems in all stages of compiling and running a program. The 

solution is to lay out your program neatly to reflect the nesting structure. Beware 

of the problems that the occasional use of section bracket tags can bring. The 

closing tagged bracket inserts extra closing brackets to close off any inner blocks or 

compound commands - thus preventing the compiler from detecting a previously 

omitted $). When a program with this error is run, the user is often baffled 

because a large portion of his program is not obeyed. As an exercise, consider the 

effect of omitting the $) on line 480 of the syntax analyser (described on page 102 

in chapter six). You should either use tagged section brackets very liberally (no 

‘untagged’ compound command or block more than, say, three lines long) or not 

use them at all. 

5.1.5 Inadvertent tagging 

A frequent fault amongst newcomers to BCPL is to omit the necessary space 

between an opening section bracket and the first declaration or command, e.g. 

writing $ (LET A = 0 

instead of $ ( LET A = 0 

which misleadingly produces the message ‘ERROR IN COMMAND’. A good habit is to 

put each section bracket on a line by itself; this also serves to emphasise the block 

nesting structure of the program. 
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5.1.6 String problems 

In older versions of the BCPL compiler, the misuse of string quotes would cause it 

to generate wild diagnostics, as most of the program would be swallowed up as 

belonging to some string, whilst the strings themselves would not form good 

BCPL syntax. Remember that to include an asterisk in a string requires you to type 

* *, and a double quotes character requires * ". In recent versions, the effect is less 

dramatic, as unescaped newline is no longer permitted in strings. 

5.2 Semantic errors 

The semantic errors are detected in a compiler pass after the syntax analysis has 

been completed, and the original source text is no longer available for pinpointing 

errors. However, in practice, programs tend to have few compiler detected 

semantic errors, and those that do occur tend to be concerned with the misuse of 

variables. The name of the offending variable is usually sufficient information for 

the programmer. However, there is one error in this class which tends to trip up 

the programmer used to other block-structured languages: 

DYNAMIC FREE VARIABLE USED 

Every BCPL programmer meets this at least once (usually several times) during 

his apprenticeship. Dynamic variables (e.g. simple variables and vectors declared 

using LET) can be used in inner blocks, but they cannot be used in procedures 

embedded in the block. 

The reason for this follows from an aim of BCPL to eliminate hidden over¬ 

heads. Dynamic variables are stored using a stack mechanism. Each activation of a 

procedure is allocated a stack frame, and a runtime pointer is maintained to the 

current stack frame. By imposing this restriction, the compiler is able to reference 

all dynamic variables as offsets from this pointer (which will usually be stored in a 

suitable machine index register), thus employing simple and efficient code. 

Furthermore, recursion is implemented without any additional complication. 

This restriction only applies to dynamic variables, so you can use functions and 

procedures (which also are declared using LET), globals, labels and static variables 

that are declared outside the current procedure. If you still have problems, then 

re-read sections 2.12 and 2.14. Most systems programmers admit that this is a 

reasonable restriction once they understand the implementation issues involved. 

5.3 Runtime error handling 

The BCPL philosophy of giving runtime freedom to the programmer allows him 

to write efficient and compact programs. However, the careless programmer who 
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is accustomed to relying on the implementation to check the meaningfulness of his 

program will meet many difficulties with BCPL. This can be regarded as a hidden 

blessing, as it imposes the need for a careful stylistic approach to the design of 

BCPL programs. We discuss first the considerations that should be given to error 

handling, and in the later sections of this chapter we describe how the same 

runtime freedom can be exploited to provide powerful yet compact program 

debugging tools. 

Error handling should be considered at an early stage in the design of a 

program. The phrase may be taken to include both detection and recovery. There 

is no built-in checking of array bounds etc. in BCPL, so explicit error checking 

should be considered. The procedures that maintain data structures should 

incorporate a certain degree of error checking (e.g. values, address offsets within 

range etc.). To effect error recovery, they should maintain consistency when an 

error is detected (e.g. by substituting null or harmless values, and by ensuring that 

data structures are not left only half filled etc.). Well-defined error indications 

should be designed into the procedure interfaces, so that an inner procedure 

which is unable to conceal an error can pass up responsibility for containment to 

the calling procedure. 

By designing in a substantial degree of error checking, you will have made 

considerable progress towards providing yourself (and anyone else who may use 

or modify your program) with a purpose-built debugging tool. A faulty value, 

generated by an erroneous procedure, could well be trapped soon afterwards by 

the incorporated redundancy before too much damage occurs obscuring the 

original fault. 

5.4 BACKTRACE, MAPSTORE, and ABORT 

Many BCPL implementations provide a number of post-mortem facilities. 

BACKTRACE is a procedure that inspects the BCPL stack, printing out part of the 

contents of each stack frame. Setting suitable compiler options allows BACKTRACE 

to display the print name of each active procedure. The output thus records the 

most recent procedure call at each nested level, together with its arguments and 

first few dynamic variables. 

MAPSTORE prints out the contents of the global vector, followed by a map of the 

program area consisting of the names and addresses in store of separately 

compiled modules, the start of procedures, and execution counts. The level of 

detail produced by MAPSTORE is controlled through compiler options. Very 

detailed information is produced by MAPSTORE when used in conjunction with 

the profile option (see below). 

The BACKTRACE and MAPSTORE procedures provide examples of how the 

addressing flexibility of BCPL can be harnessed to good effect. They are both 

extremely machine dependent, since BACKTRACE makes use of detailed know- 
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ledge of the runtime stack, whilst MAPSTORE searches the compiled program for 

specific machine instructions. Despite this, the overall organisation of these 

procedures is similar in most implementations. 

A procedure called ABORT completes the set of post-mortem procedures. 

ABORT can be called from within a program or via an appropriate operating 

system facility (such as program store trap). We conclude this section with the text 

of this post-mortem package as implemented on the ModComp II machine (a 

16-bit word-addressed minicomputer). 

GET "LIBHDR" 

MANIFEST $( ENTRYW0RD1 =#XF813 

ENTRYW0RD2 =#XF630 

COUNTWORD =#XC0E0 

GLOBWORD =#XAAAA 

LIBRWORD =#XBBBB 

SECTWORD =#XE7FF 

$) 

LET ABORT(CODE, ADDR, OLDSTACK) BE 

$(1 WRITEF("*N*NFAULT ?SN*N", CODE) 

WRITEF("ADDR = #£X4, STACK POINTER = #??X4*N" , 

ADDR, OLDSTACK) 

BACKTRACE(ADDR, OLDSTACK) 

MAPSTORE() 

STOP(100) 

$)1 

LET BACKTRACE(ADDR, STACKP) BE 

$(1 LET P = STACKP 

LET Q, L, F = P+9, 0, 0 

WRITES("*NBACKTRACE CALLED*N”) 

WRITES("*N P LINK FUNCT?* 

* VARI VAR2 . . .*N*N") 

FOR I = 1 TO 25 DO 

$( WRITEF("#^X4: ", P) 

UNLESS 500<=P<=32000 BREAK 
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L := P! 0 

WRITEARG(L) // link 

F := P!l-8 // function name? 

TEST (P!-1=LIBRW0RD | F!4=ENTRYW0RD1) &. 

GETBYTE(F,0)=7 

THEN WRITEF(" ' ?SS' " , F) 

ELSE WRITEF(" ") 

IF Q>P+7 | Q<P DO Q := P+7 

FOR T = P+2 TO Q-l DO WRITEARG(!T) 

IF P’0=0 & P!1=0 DO $( WRITES("*NBASE OF STACK*N") 

BREAK $) 

UNLESS 500<=L<=32000 DO 

$( WRITES("*NIMPROPER LINK*N") 

BREAK $) 

NEWLINE() 

Q := P 

P := P - !L $) 

WRITES("*NEND OF BACKTRACE*N*N") $)1 

LET MAPST0REO BE 

$(1 LET K = 0 // used for layout 

LET G = GLOBBASE 

LET GSIZE = G!0 

WRITEF( "STACKBASE=#^oX4, STACKEND=#%X4*N" , 

STACKBASE, STACKEND) 

WRITEF("*NVALUES SET IN THE GLOBAL VECT0R(#?SX4) ", G) 

TEST 100<=GSIZE<=10000 

THEN WRITEF("%N GLOBALS ALLOCATED*N", GSIZE) 

ELSE $( GSIZE := 400 

WRITES("GLOBAL ZERO CORRUPTED*N") $) 
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FOE T = 1 TO GSIZE DO 

UNLESS G!T=GLOBWORD DO 

$( IF K REM 4 = 0 DO NEWLINE() 

K := K + 1 

WRITEF(" G?SI3 ", T) 

WRITEARG(G!T) $) 

WRITES("*N*N*N") 

K := 0 

WRITEF("MAP AND COUNTS FROM #%X4 TO #?SX4*N" , 

LOADPOINT, ENDPOINT) 

FOR P = LOADPOINT TO ENDPOINT-2 DO 

$( IF !P=COUNTWORD A (P!l=P+3 | P!l=P-9) DO 

$( IF K REM 4 = 0 DO NEWLINE() 

K s= K + 1 

WRITEF(" #?SX4: %I7 ", P, P!1!0) $) 

IF !P=SECTWORD & GETBYTE(P+ 2,0) = 15 DO 

$( WRITEF( "*N*N#?SX4 SECTION %S SIZE %N*N", 

P, P+2, P!1-P) 

K := 0 $) 

IF (P!4=ENTRYW0RD1 & P!5=ENTRYWORD2) | 

P!(-1)=LIBRW0RD DO 

IF GETBYTE(P,0)=7 DO 

$( IF K REM 4 = 0 DO NEWLINE( ) 

K := K + 1 

WRITEF( "#?SX4/?SS ", P+4, P) $) 

$) 

WRITES("*N*NEND OF MAP*N*N") 

$)1 

AND WRITEARG(V) BE 

$(1 LET F = V - 4 

IF F!-1=LIBRW0RD | V!0=ENTRYWORD1 DO 

IF GETBYTE(F,0)=7 DO 

$( WRITEF(" ’%S"', F) 

RETURN $) 

WRITEF( #^X4", V) $)1 
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5.5 TRACE and the profile option 

TRACEFN is a procedure which outputs a summary of each activation of the 

procedures in a program. The summary takes the form of the procedure name, 

the values of the parameters on entry and the value of the stack pointer on entry. 

This information is output when the procedure is entered if the global variable 

TRACING is set to true. An appropriate compiler option (see your implemen¬ 

tation notes) will cause calls to TRACEFN to be inserted automatically. Thus you 

can select the use of TRACEFN by manipulating TRACING, and by using the 

compiler option, so that only the required tracing output is generated. 

The profile option causes additional statistics to be gathered, whilst the pro¬ 

gram is running, for subsequent output by MAPSTORE. Use of the option causes 

extra instructions to be compiled to maintain execution counts at certain places in 

the compiled code. The locations and values of these counts can be related to the 

original source program with little difficulty. In effect, an execution count for each 

linear sequence of commands (i.e. the body of a loop, alternatives in conditional 

commands etc.) is maintained. 

The advantages of the profile option include: 

1. after a catastrophic error, it indicates those parts of the program that were 

never executed; 

2. it helps to find inner loops and frequently executed sequences; 

3. studying the profile counts of a large program tends to increase understand¬ 

ing of the way the program works in practice (e.g. the effectiveness of a 

freestore-management strategy, or a hashing function); 

4. the option is relatively cheap, typically adding 20% to the size and execution 

time of a program. 

5.6 DEBUG: an interactive debugging system 

DEBUG was written as an interactive debugging aid for BCPL programs running 

on the ModComp II computer under the MAXCOM system. DEBUG allows one to 

inspect the state of the BCPL program and read or update any location in store. 

The user can insert and remove breakpoints in his compiled program, and cause 

continuation after inspecting variables etc. 

DEBUG maintains 17 words of memory consisting of 16 variables V0 to V15 and a 

special word called the current value. The current value can be set by typing a basic 

expression. Examples of every kind'of basic expression are given below: 

1265 a decimal number 

#7FFD a hexadecimal number 

V3 the value of a variable 

V the address of the vector of variables 

G31 the value of a global variable 

G the base of the global vector 
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The current value can be modified by typing an operator and possibly a second 

basic expression. Operators available are: (remainder after division), 

< (left shift), > (right shift), 4, % (logical-or), ! (indirection; . is a synonym for !). 

Complicated expressions may be typed, but parentheses are not permitted and 

evaluation is strictly left to right. 

Commands are identified by a single character. Typical commands (in all some 

18 are available) are: 

= 
print the value of the current expression in the currently selected 

style; 

C, H, 0, D used to select the printing style for values; 

print the contents of the location addressed by the current value; 

U update a general store location; 

Sn update variable Vn; 

Pn update global n; 

L list a region of store; 

X call a specified BCPL procedure with up to five arguments; 

Fn search store for a specified value; 

Bn set or unset breakpoint n; 

Q exit from DEBUG (continue after breakpoint). 

Even though DEBUG is machine dependent, it is a good example of a small yet 

powerful facility, and the following code can form a useful basis for similar 

systems on many other machines. 

GET "LIBHDH" 

GLOBAL $( GLOB0:0 $) 

MANIFEST $( 

INSTB.SIB.3=#X2683 

$) 

STATIC $( CH=0; VARS=0; STYLE=0; GLOBBASE=0 

INSTR=0; ADDR=0 

REC.P=0; REC.L=0 $) 

LET DEBUG() = VALOF 

$(1 LET A = 0 

LET RDCHSAV, WRCHSAV = RDCH, WRCH 

VARS := TABLE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.0 

INSTR := TABLE 0,0,0,0,0,0,0,0,0,0 

ADDR := TABLE 0,0,0,0,0,0,0,0,0,0 

STYLE := " £X4" 

GLOBBASE := SGLOB0 

REC.P, REC.L := LEVEL(), NXT 
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TEST STANDALONE 

THEN $( LET BREAKNO = -1 

FOR I = 0 TO 9 DO 

IF !#X26=ADDR!1+1 DO BREAKNO := I 

RDCH, WRCH := SQRDCH, SOWRCH 

TEST BREAKNO<0 

THEN WRITES("*NSTANDALONE DEBUG*N") 

ELSE $( LET SIZE = INSTRSIZE(INSTR!BREAKNO) 

LET T = TABLE 0,0,0,0,0,0 

A := ADDR!BREAKNO 

T!0 := INSTR!BREAKNO 

FOR I = 1 TO SIZE-1 DO T!I := A!I 

T!SIZE := #XE700 // BRU 

T!(SIZE+1) := A + SIZE 

!#X26 := T // plug resumption address 

WRITEF("BREAK NO J?N AT 55X4*N" , BREAKNO, A) 

$) 

$) 
ELSE WRITES("*NDEBUG*N") 

NXT:CH := RDCH() 

SW: SWITCHON CH INTO 

$( DEFAULT: ERROR("BAD COMMAND %C", CH) 

CASE '*N': 

CASE '*S': GOTO NXT 

CASE :CASE ' V1:CASE ' G ’: 

CASE '0':CASE ' 1':CASE '2':CASE ’3' : CASE '4' 

CASE '5':CASE ' 6':CASE 17':CASE '81 : CASE '9' 

A : = RBEXP() 

GOTO SW 

CASE '.':CASE ' !':CASE 1 + ':CASE '-' : CASE 1 * * 

CASE '/':CASE ' 1’:CASE '<’:CASE ’>' : 

CASE 1 &':CASE 1 %' : 

A := REXP(A) 

GOTO SW 

CASE ’ C' : STYLE := " %C"; GOTO NXT 

CASE ’H1 : STYLE := " 55X4"; GOTO NXT 

CASE ’O’: STYLE := " 5506"; GOTO NXT 

CASE 1 D’ : STYLE := " 5516"; GOTO NXT 
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CASE 'X': A := A(VARS! 0, VARS!1,VARS!2,VARS!3,VARS!4) 

GOTO NXT 

CASE 'O': CH := RDCH() 

!A := REXP(RBEXP()) 

GOTO SW 

CASE 'I': A := A+l 

GOTO NXT 

CASE 'L': CH := RDCH() 

FOR I = 0 TO RBEXPO-l DO 

$( IF I REM 8 = 0 DO $( NEWLINE( ) 

PRADDR(A+I) $) 

WRITEF(STYLE,A!I) $) 

NEWLINE() 

GOTO NXT 

CASE '=': WRITEF(STYLE, A) 

NEWLINE() 

GOTO NXT 

CASE ’N': A := A+l 

CASE WRITEF(STYLE, !A) 

NEWLINE() 

GOTO NXT 

CASE 'B': // 0 B unset all Break points 

// 0 Bn unset break point n 

// A Bn set break point n to addr A 

$( LET N = -1 

CH := RDCH() 

IF '0'<=CH<='9' DO 

$( N := CH-'0' 

CH := RDCH() $) 

IF A=0 DO 

$( FOR I = 0 TO 9 DO IF I=N | N<0 DO 

IF ADDR!I NE 0 DO 

$( !(ADDR!I) := INSTRII // UNSET BREAK PT 

ADDR!I := 0 $) 

GOTO SW $) 

IF INSTRSIZE(!A)=0 | N<0 | ADDR!N NE 0 DO 

ERROR("BAD BREAK") 
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INSTR!N, ADDR!N := !A, A 

!A := INSTR.SIR.3 

GOTO SW 

$) 

CASE 'F': $( LET W, M = VARS!0, VARS!1 

CH := RDCH() 

FOR I = 1 TO RBEXP() DO 

$( IF ( ( ! A NEQV W)AM)=0 GOTO SW 

A := A+l $) 

WRITES("BAD FIND") 

GOTO SW $) 

CASE 'P1: CH := RDCH() 

GLOBBASE:RDN(10) := A 

GOTO SW 

CASE 'S’: CH := RDCH() 

VARS!RDVN() := A 

GOTO SW 

CASE ’T’: BACKTRACES, A); GOTO NXT 

CASE 'M1: NEWLINEO 

MAPSTORE() 

GOTO NXT 

CASE 'Q1: WRITES(" EXIT FROM DEBUG*N") 

RDCH, WRCH := RDCHSAV, WRCHSAV 

RESULTIS A 

$) 

$)1 

AND RDN(RADIX) - VALOF 

$(1 LET A, SW = 0, FALSE 

$( LET D = -1 

IF 101<=CH<=19' DO D := CH-'0' 

IF 'A'<=CH<='F' DO D := 10+CH-'A' 

UNLESS 0<=D<RADIX BREAK 

SW := TRUE 

A := A*RADIX + D 

CH := RDCH() $) REPEAT 
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UNLESS SW DO ERROR("BAD NUMBER") 

RESULTIS A $)1 

AND RDVN() = VALOF 

$(1 LET A = RDN(10) 

UNLESS 0<=A<=15 DO ERROR("BAD VARIABLE") 

RESULTIS A $)1 

AND RBEXP() = VALOF SWITCHON CH INTO 

$(1 DEFAULT: ERROR("BAD EXPRESSION") 

CASE '0':CASE '11:CASE ’2’:CASE '31:CASE '4': 

CASE '5':CASE '61:CASE '7':CASE '8':CASE '9': 

RESULTIS RDN(10) 

CASE : CH := RDCH() 

RESULTIS RDN(16) 

CASE 1G': CH := RDCH() 

UNLESS '0'<=CH<='9' RESULTIS GLOBBASE 

RESULTIS GLOBBASE!RDN(10) 

CASE 'V': CH := RDCH() 

UNLESS '0'<=CH<='9' RESULTIS VARS 

RESULTIS VARS!RDVN() 

CASE CH := RDCH(); RESULTIS -RBEXP() 

CASE CH := RDCH(); RESULTIS RBEXP() 

AND B() = VALOF $( CH := RDCH() 

RESULTIS RBEXP() $) 

AND REXP(A) = VALOF 

$(1 SWITCHON CH INTO 

$( DEFAULT: RESULTIS A 

CASE ’.': 

CASE '!': A := !A; CH := RDCH(); LOOP 

CASE '+': A := A+B(); LOOP 

CASE A := A-B(); LOOP 

CASE A := A*B(); LOOP 

CASE '/'■■ A : = A/B(); LOOP 

CASE A := A REM B() ; LOOP 
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CASE A := A«B( ) ; LOOP 

CASE A := A»B(); LOOP 

CASE A := AAB(); LOOP 

CASE A := A|B(); LOOP 

$) 
$)1 REPEAT 

AND PRADDR(A) BE 

$(1 A := A & #77777 

TEST GLOBBASE<=A<=GLOBBASE+GLOBBASE!0 

THEN WRITEF(" G%13 ", A-GLOBBASE) 

ELSE TEST VARS<=A<=VARS+15 

THEN WRITEF(" V?S12# ", A-VARS) 

ELSE WRITEF("%I6", A) 

WRITEF("(?SX4): ", A) $)1 

AND INSTRSIZE(INS) = VALOF 

$(1 LET F = INS»8 

LET T = TABLE // 2 bits per op code 

// 0 if unbreakable otherwise the size 

// except for CBMB and CRMB 

4X5540,4X5555, 0, 0, 

4X5555,#X5555,#X5555,4XAAAA, 

#X5555,4X5551, 0, 0, 

4X5555,4X5551,4XAAAA,4XAAAA, 

4XA8FC, 0,4X54AB,4X54AB, 

4XA0A0.4X000F,4X5050,4X5050, 

4XA8FC, 0,4X54AB,4X54AB, 

4XAAAA,4XAAA8,4X5554,4X5555 

IF F=4X87 | F=4XC7 RESULTIS 4 // CBMB or CRMB 

IF F=4XE7 & (INS&4XF0) NE 0 RESULTIS 0 

// BLM is unbreakable 

RESULTIS T! ( F»3)»14-2* (F&7) &. 3 

$)1 

AND ERROR(S, A) BE 

$(1 NEWLINE() 

WRITEF(S, A) 

NEWLINE() 

UNTIL CH='*N' DO CH := RDCH() 

LONGJUMP(REC.P, REC.L) $)1 
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5.7 Runtime potholes and traps 

Even the most careful programmer will occasionally be baffiled by some runtime 

errors, and the inexperienced newcomer will undoubtedly experience greatest 

difficulty here. However, he should take encouragement from the fact that BCPL 

is an order of magnitude easier to write and debug than assembly code, and that 

many large BCPL programs have been made to run with little difficulty. 

We now discuss some of the more common causes of perplexity that have been 

noted by those engaged in introducing and teaching BCPL. 

5.7.1 Missing procedure 

This is a frequent cause of problems and can occur, for example, if a global 

procedure is omitted altogether, or its name is mistyped in its declaration. The 

declaration of a global variable at the head of a program allows the compiler to 

accept calls to a procedure with this name from any part of the program. The 

compiler assumes that the global variable will contain, at the time of call, the 

procedure value (normally the entry address) of the procedure. There is no check 

that the procedure has in fact been provided, indeed it may well be presented as 

part of a separately compiled module. Omission of the procedure altogether will 

usually cause the program to abort in some implementation-dependent way, often 

generating a post-mortem dump. 

5.7.2 Erroneous allocation of global variables 

It is neither possible nor desirable for the compiler to check that global variables 

have been allocated distinct locations in the global vector. Hence it is possible for 

the same global location to be used accidentally for two purposes at the same time, 

possibly as the result of mistyping a global number. A possible effect of this error is 

that either the wrong procedure is called, or the procedure value is destroyed, or 

the value of a variable is unexpectedly changed. 

5.7.3 Misuse of procedure values 

In some languages (e.g. Algol 60), you assign to the function name as a method of 

specifying the result of the function call. This is not the case in BCPL, since the 

body of a function is an expression (usually a valof-expression). However, it is not 

uncommon for newcomers to BCPL to assign to the function name. This results in 

the destruction of the procedure value (i.e. the function’s start address), almost 

certainly causing a catastrophic fault the next time the function is called. Omitting 

the brackets in a parameterless function call will produce the procedure value of 

the function, not the result of calling it. 
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5.7.4 Misuse of pointers and subscripts 

This error is frequently committed. The result is often spectacular, as vectors are 

usually stored on a stack together with procedure links and dynamic variables. 

Corruption of a link can cause unexpected jumps and loops. Sometimes this error 

simply results in the values of other variables being mysteriously altered. If a 

procedure value is corrupted to zero then on some implementations this can result 

in re-entry to the entire program. Corruption of the stack can also devalue the 

effectiveness of runtime tracing and post-mortem systems. On some implemen¬ 

tations it is possible to overwrite the program if a subscript is out of bounds by a 

substantial amount, or if a vector or pointer is used before it is initialised. 

5.7.5 Simultaneous declarations 

The facility in BCPL to declare several variables and procedures simultaneously 

can lead to unexpected results, illustrated by the following example: 

LET A = 5 

AND B = A + 2 

This is, in fact, unlikely to place the value 7 in B. The assignments implied in the 

declaration may be performed in either order. This can lead to a program 

working on one installation but not another. The AND construction is never 

needed for simple variables and should only be used when really necessary for 

procedures. 

5.7.6 Multiple use of the same name 

It is easy to forget that a local variable will take precedence over a global of the 

same name. Note also that (unlike many other programming languages) the 

following block contains two separate variables I: 

$( LET 1 = 0 

FOB 1=0 

$( . . . 

$) 

$) 

TO 5 DO 

// only the controlled variable I 

// of the for-coimnand is accessible here 

// and the original I will have the same 

// value as it had before the for-loop 
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5.7.7 Effects of BCPL call-by-value 

An easy trap for ex-Fortran programmers is to assign to a formal parameter inside 

a procedure, expecting this to result in an assignment to the actual parameter. It 

does not. 

5.7.8 Erroneous use of GOTO 

Ex-Algol programmers tend to forget that a BCPL goto-command cannot be used 

to cause the logical termination of a procedure (unwinding the stack etc.). If this is 

attempted the program often continues to run for some time without obvious 

error until it collapses mysteriously. In normal BCPL programs, the experienced 

programmer finds that he does not need to use GOTO very often, and when he does 

it is almost always to a label within the same procedure. In the rare cases when exit 

from a procedure using the effect of GOTO is perceived as necessary, then the 

library procedures LEVEL and LONG JUMP should be used (see chapter four). 

5.7.9 ENDCASE 

If ENDCASE is omitted at the end of a group of commands labelled by a case-label 

within a switchon-command, then control passes through to the next CASE. 

Curious effects can result from accidental omission of ENDCASE. 

5.7.10 The dangling-reference problem 

This problem occurs when the address of some dynamic variable (or perhaps a 

vector) in a procedure is preserved, say, in a global. Subsequently an exit is made 

from the procedure, and then the global is used. The result is a reference to a 

variable which the compiler has deallocated. 

5.7.11 Omission of operators 

Some newcombers to BCPL find it difficult to remember that vectors in BCPL are 

accessed as V! (N+1) ,_not as V (N+1) or V [ N+1 ]. The compiler treats both of the 

latter as a call on the function V. Equally, writing 

A + 4 (B + C) 
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instead of 

A + 4 * (B + C) 

will cause, on many implementations, a subroutine jump to location 4 of the 

machine. 

5.7.12 Operator precedence errors 

In a typeless language we have to consider the relative precedence of operators 

that normally have no relation with each other. For example, consider 

A+l « N and A + 1«N 

Intuitively they mean different things. Syntactically they are equivalent, and in 

fact both mean (A+1)«N as + takes precedence over «. A similar source of 

errors is in expressions such as contained in 

IF A&#77 = B&#77 DO . . . 

This means 

IF (A & (#77=B)) & #77 DO ... 

If A happens to match the representation for false, or if A matches true and B is not 

equal to #77, then the condition will be false. Otherwise the result is implemen¬ 

tation dependent! The precedence rules of BCPL cannot be blamed, as the 

following example shows: 

IF A='X' & B='Y' DO ... 

This time the intuitive meaning is correct: 

IF (A='X') & (B='Y') DO ... 

5.7.13 Parameter mismatches 

It is easy to forget, after using Algol or PL/I, that there is no type-checking of 

BCPL parameters, or indeed that the desired number of parameters has been 

provided. 
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5.7.14 Uninitialised variables 

The initial contents of vectors and globals are not defined in BCPL. In many 

implementations, the store locations corresponding to the global vector might be 

initialised to zero or some other value (e.g. the address of ABORT, to trap the 

missing procedure error described above). Vectors use re-usable store so this 

certainly should not be relied upon. In general the store will contain rubbish 

which will vary from run to run. If your program behaves differently every time 

you run it, or only sometimes works, then this could well be a sign that a location is 

being used before being initialised. 

5.7.15 Selecting the wrong output 

Great care should be taken to ensure that the correct output stream is selected at 

all times. This is particularly the case when diagnostics are being generated. It is 

easy to mix diagnostics with other output. If this output is binary, then the 

program simply generates corrupt binary output with no visible indication why. 
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The BCPL lexical and syntax analyser 

In this chapter a substantial body of BCPL text is presented and discussed in 

detail. It consists of an important part of the BCPL compiler and has been 

included here for many reasons. In the first place, it is a realistic example of how 

BCPL is used in practice. It has been carefully written and is used to exhibit 

various points relating to programming style in BCPL and it also contains many 

examples of programming techniques that are well suited to BCPL. In addition, 

the complete understanding of this program helps to consolidate one’s knowledge 

of the BCPL syntax. It is also likely to be useful to those people involved in writing 

compilers in high-level languages, particularly if they plan to use BCPL for the 

purpose. 

Before describing the syntax analyser in detail, it is necessary to give a brief 

description of the overall structure of the compiler in order to clarify the context 

in which the syntax analyser runs. The compiler is implemented in three passes 

called SYN, TEN and CG as shown in figure 6.1. 

Fig. 6.1 The structure of the BCPL compiler 

SYN is the pass that performs the syntax analysis of the raw BCPL source and 

converts it into the tree structure held in main memory called the applicative 

expression tree (AE tree). This tree is then processed by the translation phase TRN 

to produce a linear sequence of statements in an intermediate code called 

OCODE. The OCODE form is then translated into either relocatable binary or 

assembly code for the target machine by the code generator (CG). OCODE has 

been carefully designed so that it can be translated with reasonable efficiency into 

the machine codes of most computers. It is described in detail in the next chapter. 

All three passes are normally coded in BCPL. Although the code generator must 

necessarily be different for different computers, the passes SYN and TRN are 

almost entirely machine independent and so this part of the compiler is nearly the 

same for each implementation of BCPL. 
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6.1 The lexical analyser 

When compiling BCPL it is convenient to break up the raw source text of the 

program into a sequence of the basic symbols of the language. There are about 75 

such symbols, many of which are represented by reserved words, such as LET and 

RETURN. Numerical constants, string constants, and identifiers are regarded as 

basic symbols, and so are composite symbols such as := and ->. The lexical 

analyser is implemented as a routine NEXTSYMB which is called by the syntax 

analyser whenever it requires another basic symbol from the source program. The 

syntax analyser does no backtracking. That is, it performs the analysis while 

reading the basic symbols in one at a time without having to reconsider a symbol 

previously dealt with. 

Within the compiler, the basic symbols are represented by small positive 

integers as specified in the manifest declaration appearing in the syntax-analyser 

header file given in lines 1 to 60 of the listing. Thus, for instance, S .GE (=25), 

declared on line 10, is used to denote the basic symbol >=. The use of manifest 

constants for this purpose is extremely beneficial to the readability of the program 

by eliminating the need for the programmer to remember which integer cor¬ 

responds to which basic symbol. Such manifest constants are often used in 

case-labels to good effect. 
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1 // SYNHDR 

2 

3 GET "LIBHDR" 

4 

5 MANIFEST $( // AE tree operators 

6 S.NUMBER=1; S.NAME=2; S.STRING=3; S.TRUE=4; S.FALSE=5 

7 S.VAL0F=6; S.LV=7; S.RV=8; S.VECAP=9; S.FNAP=10 

8 S.MULT=11; S.DIV=12; S.REM=13 

9 S.PLUS=14; S.MINUS=15; S.NEG=17 

10 S.EQ=20; S.NE=21; S.LS=22; S.GR=23; S.LE=24; S.GE=25 

11 S.NOT=30; S.LSHIFT=31; S.RSHIFT=32; S.L0GAND=33; S.L0G0R=3 

12 S.EQV=35; S.NEQV=36; S.C0ND=37; S.C0MMA=38; S.TABLE=39 

13 S.AND=40; S.VALDEF=41; S.VECDEF=42; S.C0NSTDEF=43 

14 S.FNDEF=44; S.RTDEF=45 

15 S.ASS=50; S.RTAP=51; S.G0T0=52; S.RESULTIS=53; S.C0L0N = 5. 

16 S.TEST=55; S.F0R=56j,S.IF=57; S.UNLESS=58 

17 S.WHILE=59; S.UNTIL=60; S.REPEAT=61; S.REPEATWHILE=62 

18 S.REPEATUNTIL=63 

19 S.L00P=65; S.BREAK=66; S.RETORN=67; S.FINISH=68 

20 S.ENDCASE=69; S.SWITCHON=70; S.CASE=71; S.DEFAULT=72 

21 S.SEQ=73; S.LET=74; S.MANIFEST=75; S.GL0BAL=76; S.STATIC=7 

22 

23 // other basic symbol codes 

24 S.BE=89; S.END=90; S.LSECT=91; S.RSECT=92; S.GET=93 

25 S.SEMIC0L0N=97; S.INTCM98 

26 S.T0=99; S.BY=100; S.DO=101; S.OR=102 

27 S.VEC=103; S.LPAREN=105; S.RPAREN=106 

28 $) 

29 

30 GLOBAL $( // globals used in LEX 

31 CHBUF:100; DECVAL:101 

32 GETV:103; GETP:104; GETT:105 

33 WORDV: 106; WORDSIZE: 107; CHARV-.108; CHARP:109 

34 PRSODRCE:110; PRLINE:111; READNUMBER:112; RDSTRCH:113 

35 SYMB:115; WORDNODE:116; CH:117 

36 RDTAG:118; PERFORMGET:119 

37 NEXTSYMB: 120; DECLSYSWORDS:121; NLPENDING: 122;CODEP:123 

38 LOOKUPWORD:125; RCH:126; LEXTRACE:127; OPTION:128 

39 WRCHBUF:131; CHC0UNT:132; LINECOUNT:133 

40 NULLTAG:134; REC.P:135; REC.L:136 

41 
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NEXTSYMB is a parameterless routine which causes the global variable SYMB to 

be set to the integer code for the next basic symbol of the source program each 

time it is called. On entry the global variable CH contains the next character of the 

source stream and on exit it holds the first character following the Basic symbol 

recognised. 

For some symbols, additional information is passed in the variables DECVAL, 

WORDSIZE and WORDNODE. If the basic symbol was the first symbol to appear on a 

line, then the global variable NLPENDING contains the value true. The definition 

of NEXTSYMB is given starting at line 65 of the listing. 

After initialising NLPENDING to false, NEXTSYMB switches on the character in 

CH and takes appropriate action as described below. 

The characters tab, newline and space are ignorable and are read in until the 

first non-ignorable character is found. While reading newpage and newline, it is 

necessary to increment the line count and set the NLPENDING flag to true. This 

flag is used in the syntax-analyser routine REXP to deal with the rule concerning a 

dyadic operator occurring as the first symbol of a line (see page 114). If the 

character is a digit, then it starts a decimal number. The number is read in and 

evaluated using the routine READNUMBER which is described later. On exit from 

READNUMBER, CH will already contain the next character of the source program 

and so NEXTSYMB returns directly. 
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42 // globals used in SYN 

43 RDBLOCKBODY:140; RDSECT:141 

44 RNAMELIST:142; RNAME:143 

45 REXP:144; RDEF:145; RC0M:146 

46 RDCDEFS:147; NAMETABLE:148 

47 FORMTREE:150; SYNREPORT:151; PLIST:152 

48 CHECKFOR:153; IGNORE:154; REXPLIST:155; RDSEQ:156 

49 LIST1:161; LIST2:162; LIST3:163 

50 LIST4:164; LIST5:165; LIST6:166 

51 NEWVEC:167; TREEP:168; TREEVEC:169 

52 CHARCODE:190; REPORTCOUNT:191; REPORTMAX:192 

53 SOURCESTREAM:193 

54 $) 

55 

56 MANIFEST $( // selectors 

57 H1=0; H2=l; H3=2; H4=3; H5=4; H6=5 

58 NAMETABLESIZE=100 

59 $) 

60 . 
61 // LEX1 

62 

63 GET "SYNHDR" 

64 

65 LET NEXTSYMBO BE 

66 $(1 NLPENDING := FALSE 

67 

68 $(2 IF LEXTRACE DO WRCH(CH) 

69 

70 SWITCHON CH INTO 

71 

72 $(S CASE '*P': 

73 CASE '*N': LINECOUNT := LINECOUNT + 1 

74 NLPENDING := TRUE // ignorable characters 

75 CASE 1*T': 

76 CASE '*S': RCH() REPEATWHILE CH='*S' 

77 LOOP 

78 

79 CASE '0':CASE ’l':CASE '2':CASE '3':CASE '4': 

80 CASE 1 51CASE 1 6 ' : CASE ' 7 ' : CASE '8': CASE '9': 

81 SYMB := S.NUMBER 

82 READNUMBER(10) 

83 RETURN 

84 
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If CH is in the range A to Z, then it starts either a name or a system word; in either 

case, the characters of the word are read and packed into the vector WORDV by a 

call of RDTAG. The word is then looked up in a symbol table using the function 

LOOKUPWORD. This function deals with both reserved words and identifiers and is 

described later. If the symbol happens to be the reserved word GET, then the 

get-directive is obeyed by a call of PERPORMGET. Both opening and closing section 

brackets begin with the character $ and can have a tag composed of the same 

characters that may appear in identifiers. It is therefore natural to use the routine 

RDTAG to read in this tag. The argument to RDTAG is normally the first character 

of an identifier, but, when it is used to read a section-bracket tag, the character $ is 

passed as an artificial first character to eliminate any possible confusion with other 

identifiers or system words when the tag is looked up in the symbol table by 

LOOKUPWORD. 

Many characters (e.g. + ;&.= !) correspond directly to basic symbols and are 

handled simply. For example, the code for + is on line 117. Before returning from 

NEXTSYMB, it is necessary to update CH with the next character of input, and this is 

achieved by executing the call of RCH which occurs at the end of the body of 

NEXTSYMB. This point is reached by executing the command BREAK. 
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85 CASE 'A':CASE 'B':CASE 'C':CASE 'D':CASE 1 E' : 

86 CASE 1F':CASE 'G':CASE 'H’:CASE 1I':CASE J' : 

87 CASE 'K1:CASE 'L':CASE 'M':CASE 'N’:CASE ' O' : 

88 CASE 'P':CASE 'Q':CASE 'B':CASE 'S':CASE ' T' : 
89 CASE 'U':CASE 'V':CASE ’W:CASE 'X':CASE ' Y' : 

90 CASE ' Z' : 

91 RDTAG(CH) 

92 SYMB := L00KUPW0RDO 

93 IF SYMB=S.GET DO $( PERFORMGET(); LOOP $) 

94 RETURN 

95 

96 CASE : RCH() 

97 UNLESS CH='(' | CH=')' DO SYNREPORT(91) 

98 SYMB := CH='(' -> S.LSECT, S.RSECT 

99 RDTAG('$') 

100 LOOKUPWORDO 

101 RETURN 

102 

103 CASE ' [ 1 : 
104 CASE '(': SYMB := S.LPAREN; BREAK 

105 CASE ' 1 ' s 
106 CASE ')’: SYMB := S.RPAREN; BREAK 

107 

108 CASE '#' : 

109 SYMB := S.NUMBER 

110 RCH() 

111 IF '0'<=CH<='7' DO $( READNUMBER(8); RETURN 

112 IF CH='B' DO $( RCH(); READNUMBER(2); RETURN 

113 IF CH='0' DO $( RCH(); READNUMBER(8); RETURN 

114 IF CH='X' DO $( RCH(); READNUMBER(16) ; RETURN 

115 SYNREPORT(33) 

116 

117 CASE '+': SYMB := S.PLUS; BREAK 

118 CASE SYMB := S.COMMA; BREAK 

119 CASE SYMB := S.SEMICOLON; BREAK 

120 CASE 13': SYMB := S.LV; BREAK 

121 CASE SYMB := S.LOGAND; BREAK 

122 CASE '|': SYMB := S.LOGOR; BREAK 

123 CASE '=': SYMB := S.EQ; BREAK 

124 CASE SYMB := S.VECAP; BREAK 

125 CASE '**':SYMB := S.MULT; BREAK 

126 

$) 

$) 

$) 
$) 
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Certain other characters (e.g. - < :) can start composite basic symbols and the 

treatment of these is exemplified by the program for < on line 154. 
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127 CASE ' : 

128 RCH() 

129 IF CH='\' DO $( SYMB := S.LOGAND; BREAK $) 

130 IF CH='/' DO 

131 $( RCH() REPEATUNTIL CH='*N' | CH=ENDSTREAMCH 

132 LOOP $) 

133 

134 UNLESS CH='* *' DO $( SYMB := S.DIV; RETURN $) 

135 

136 $( RCH() 

137 IF CH='**' DO 

138 $( RCH() REPEATWHILE CH='**' 

139 IF CH='/' BREAK $) 

140 IF CH=' *N’ DO LINECOUNT := LINECOUNT+1 

141 IF CH=ENDSTREAMCH DO SYNREPORT(63) 

142 $) REPEAT 

143 

144 RCH() 

145 LOOP 

146 

147 

148 CASE ' \ ' : RCH() 

149 IF CH='/' DO $( SYMB := S.LOGOR; BREAK $) 

150 IF CH='=' DO $( SYMB := S.NE; BREAK $) 

151 SYMB := S.NOT 

152 RETURN 

153 

154 CASE : RCH() 

155 IF CH='=1 DO $( SYMB := S.LE; BREAK $) 

156 IF CH='<' DO $( SYMB := S.LSHIFT; BREAK $) 

157 SYMB := S.LS 

158 RETURN 

159 

160 CASE : RCH() 

161 IF CH='=' DO $( SYMB := S.GE; BREAK $) 

162 IF CH='>' DO $( SYMB := S.RSHIFT; BREAK $) 

163 SYMB := S.GR 

164 RETURN 

165 

166 CASE t _ 1 : RCH() 

167 IF CH='>' DO $( SYMB := S.COND; BREAK $) 

168 SYMB := S.MINUS 

169 RETURN 

170 
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String constants are enclosed in double quotes and may contain up to 255 string 

characters. These characters are read using the function EDSTECH and are stored 

in the vector CHAEV one by one. These characters are then packed into the vector 

WOEDV using the library procedure PACKSTEING. The result of this call is 

assigned to WOEDSIZE, being the subscript of the highest element of WOEDV that is 

used in the packed string. One should note that this part of the lexical analyser will 

work whatever the word length of the machine on which the compiler is running, 

since the machine-dependent knowledge of how strings are packed is entirely 

encapsulated in the library routine PACKSTEING. PACKSTEING is used for the 

same purpose in EDTAG in the treatment of identifiers and section bracket tags. 

A character constant is a string character enclosed in single quotes and is 

semantically equivalent to a number. The value of the number must be known 

early in the compilation since character constants can be used in manifest 

expressions. But since it depends on the character code of the target machine, 

which may be different from the code used in the compiling machine, it is 

necessary to perform a code conversion. This is done by the function CHAECODE 

which is set up in the steering program of the compiler. CHAECODE is also used in 

TRN to convert the codes of string characters as they are converted into OCODE 

form. 

Either a dot or an end-of-stream character can mark the end of a section of 

program. If the current input is from a get-stream (see page 96), then the previous 

input is resumed, otherwise the end of the program is indicated by setting S YMB to 

the value S. END. Notice that illegal characters cause a syntax error message to be 

generated, by the call SYNREPOHT( 94) and that this call is made after assigning 

the character ' * S' to CH in order to prevent an infinite repetition of this error 

message. 
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171 CASE ':': : RCH() 

172 IF CH='=' DO $( SYMB := S.ASS; BREAK $) 

173 SYMB := S.COLON 

174 RETURN 

175 

176 

177 CASE "" : : CHARP := 0 

178 RCH() 

179 

180 UNTIL CH="" DO 

181 $( IF CHARP=255 DO SYNREPORT(34) 

182 CHARP := CHARP + 1 

183 CHAR?!CHARP := RDSTRCH() $) 

184 

185 CHARV!0 := CHARP 

186 WORDSIZE := PACKSTRING(CHARV, WORDV) 

187 SYMB := S.STRING 

188 BREAK 

189 

190 CASE '*' 1 :RCH() 

191 DECVAL := CHARCODE(RDSTRCH()) 

192 SYMB := S.NUMBER 

193 UNLESS CH='* 1 ' DO SYNREPORT(34) 

194 BREAK 

195 

196 

197 DEFAULT: UNLESS CH=ENDSTREAMCH DO $( CH := ' *S' 

198 SYNREPORT(94) 

199 CASE V: IF GETP=0 DO $( SYMB := S.END 

200 RETURN $) 

201 ENDREAD() 

202 GETP := GETP - 3 

203 SOURCESTREAM := GETV!GETP 

204 SELECJINPUT(SOURCESTREAM) 

205 LINECOUNT := GETV!(GETP+1) 

206 CH := GETV!(GETP+2) 

207 LOOP 

208 $)S 

209 

210 $)2 REPEAT 

211 

212 RCH( ) 

213 $)1 
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6.2 The function L00KUPW0RD 

Identifiers, system words, and section bracket tags are held in a symbol table 

maintained by the lexical analyser. This table is organised as a number of lists 

whose roots are the elements of a vector called NAMETABLE. When a name is to be 

looked up in this table, the function L00KUPW0RD is called with the packed 

characters of the name held in the elements of WORDV. The subscript of the 

highest element of WORDV that is used is held in the variable WORDSIZE. In order 

to select which list to search, L00KUPW0RD computes a simple hash value (on line 

223) that depends on the characters in WORDV. It does this by adding together the 

first and last words of WORDV as though they were integers, shifting to the right by 

one place and then using REM to obtain the result after division by the name table 

size. This hash-value computation has been designed with care in order to ensure 

that it works reasonably well whatever character code, word length or number 

representation is being used. It should be observed that the hash value depends 

upon the length and first few characters of the name, since these are held in 

WORDV 10, and also the last few characters of the name, since these are held in 

WORDV! WORDSIZE. The logical right shift is used to ensure that the left-hand 

operand of REM is positive thus assuring a positive hash value. NAMETABLESIZE is 

currently declared as a manifest constant equal to 100. It is clear that the same 

name may give rise to different hash values on many different implementations of 

BCPL, but this does not stop the algorithm from working effectively. 

The first word of a name node contains the integer code of the basic symbol that 

this node represents. It is, for instance, the manifest constant S . LET in the node 

for the system word LET. For an ordinary identifier, it is the manifest constant 

S . NAME. The second word in a name node is either zero or a pointer to the name 

node of another name having the same hash value. The third and subsequent 

words of a name node contain the packed characters of the name. The until- 

command in L00KUPW0RD controls the search for a node that matches the name 

held in WORDV. Within this loop, W0RDN0DE points to the current name node 

under consideration, and the auxiliary variable I is the subscript of the next 

element of WORDV to be compared. If the comparision is successful, then I is incre¬ 

mented, otherwise attention is transferred to the next name node in the list. The 

loop continues either until W0RDN0DE is zero indicating that the list is exhausted, 

or until I is greater than WORDSIZE indicating that a matching node has been 

encountered. In the former case, L00KUPW0RD creates an appropriate new name 

node and inserts it at the start of the current list. The space for this node is 

obtained by a call for the function NEWVEC which is described later. 

The result of L00KUPW0RD is the integer code for the basic symbol that has just 

been looked up. Notice that this is extracted from the current name node by the 

expression HI 1 W0RDN0DE in which HI is a manifest constant equal to zero. The 

manifest constants HI, H2, . . ., H5 are used as selectors in this way throughout the 

compiler. 
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214 

215 . 

216 // LEX2 

217 

218 GET "SYNHDR" 

219 

220 LET LOOKUPWORD() = VALOF 

221 

222 $(1 LET HASHVAL = 

223 (WORDV!0+WORDV!WORDSIZE » 1) REM NAMETABLESIZE 

224 

225 LET I = 0 

226 

227 WORDNODE := NAMETABLE!HASHVAL 

228 

229 UNTIL WORDNODE=0 | I>WORDSIZE DO 

230 TEST WORDNODE!(I+2)=W0RDV!I 

231 THEN I := 1+1 

232 ELSE WORDNODE, I := H2!WORDNODE, 0 

233 

234 IF WORDNODE=0 DO 

235 $( WORDNODE := NEWVEC(WORDSIZE+2) 

236 WORDNODE!0, WORDNODE!1 := S.NAME, NAMETABLE!HASHVAL 

237 FOR I = TO WORDSIZE DO WORDNODE!(1+2):= WORDV!I 

238 NAMETABLE!HASHVAL := WORDNODE $) 

239 

240 RESULTS HI!WORDNODE $)1 

241 

242 AND DECLSYSWORDS() BE 

243 $(1 CODEP := TABLE 

244 S.AND, 

245 S.BE,S.BREAK,S.BY, 

246 S.CASE, 

247 S.DO,S.DEFAULT, 

248 S.EQ,S.EQV,S.OR,S.ENDCASE, 

249 S.FALSE,S.FOR,S.FINISH, 

250 S.GOTO,S.GE.S.GR.S.GLOBAL,S.GET, 

251 S. IF,S.INTO, 

252 S.LET,S.LV,S.LE,S.LS, 

253 S.LOGOR,S.LOGAND,S.LOOP,S.LSHIFT, 
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If we look more closely at the coding of the until-command, we find that it is not 

entirely optimal since WORDNODE is compared with zero each time I is incremen¬ 

ted, and I is compared with WORDSIZE each time I is set to zero. Furthermore, 

WORDNODE is again compared with zero as soon as the until-loop is terminated 

although its value is known at that time as a result of the evaluation of the 

termination condition. The program was written this way since it was the most 

comprehensible coding that could be found and the slight execution inefficiency is 

insignificant. To achieve the more efficient coding one would have had to 

complicate the text by the use of labels and goto-commands. 

Before the compilation of a program can be started, it is necessary to initialise 

the name table with entries for all the reserved words of the language. This is done 

by a call for the routine DECLSYSWORDS and, since this is called only once, it was 

worthwhile coding as compactly as possible. The method chosen makes use of a 

table containing the integer codes for all the reserved-word basic symbols and an 

auxiliary routine D which unpicks the reserved words, one at a time, from a string 

of them supplied as its argument. It is necessary to make two calls for D since the 

string of reserved words would otherwise be too long. The definition of D is 

straightforward. Note the use of LOOKUPWORD to insert the reserved words into 

the table. 

The last node to be added by DECLSYSWORDS is one representing the (null) tag 

of an untagged section bracket. The pointer to this last node is assigned to the 

variable NULLTAG which is used during syntax analysis by the function RDSECT 

described later. 



The lexical and syntax analyser 93 

254 S.MANIFEST, 

255 S.NE,S.NOT,S.NEQV, 

256 S. OR, 

257 S.RESULTIS,S.RETURN,S.REM,S.RSHIFT,S.RV, 

258 S.REPEAT,S.REPEATWHILE,S.REPEATUNTIL, 

259 S.SWITCHON,S.STATIC, 

260 S.TO,S.TEST,S.TRUE,S.DO,S.TABLE, 

261 S.UNTIL,S.UNLESS, 

262 S.VEC,S.VALOF, 

263 S.WHILE, 

264 0 

265 

266 D("AND/* 

267 *BE/BREAK/BY/* 

268 *CASE/* 

269 *DO/DEFAULT/* 

270 *EQ/EQV/ELSE/ENDCASE/* 

271 *FALSE/FOR/FINISH/* 

272 *GOTO/GE/GR/GLOBAL/GET/* 

273 *IF/INTO/* 

274 *LET/LV/LE/LS/LOGOR/LOGAND/LOOP/LSHIFT//") 

275 

276 D("MANIFEST/* 

277 *NE/NOT/NEQV/* 

278 *OR/* 

279 *RESULTIS/RETURN/REM/RSHIFT/RV/* 

280 *REPEAT/REPEATWHILE/REPEATUNTIL/* 

281 *SWITCHON/STATIC/* 

282 *TO/TEST/TRUE/THEN/TABLE/* 

283 *UNTIL/UNLESS/* 

284 *VEC/VAL0F/* 

285 *WHILE/* 

286 *$//") 

287 

288 NULLTAG := WORDNODE $)1 

289 

290 

291 AND D(WORDS) BE 

292 $(1 LET I, LENGTH =1,0 

293 
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6.3 Miscellaneous lexical analysis procedures 

Characters of raw source text are read by the routine RCH which assigns them to 

the variable CH for the lexical analyser. It also implements the line-numbered 

source-listing option as well as maintaining a circular buffer of the latest 64 

characters of source that have been read. The content of this buffer is output 

by WRCHBUF as part of any syntax error message generated by the routine 

SYNREPORT described on page 102. 

The routine RDTAG is used to read in the characters of identifiers, system words, 

and section bracket tags and pack them into the vector WORDV, assigning to 

WORDSIZE the subscript of the highest element of this vector that is used. The 

formal parameter CHARI is used to hold the first character of the tag. For section 

bracket tags, this character is a $ to eliminate any possible confusion with 

identifiers and reserved words. 
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294 $( LET CH = GETBYTE(WORDS, I) 

295 TEST CH='/' 

296 THEN $( IF LENGTH=0 RETURN 

297 CHARV!0 := LENGTH 

298 WORDSIZE := PACKSTBING(CHARV, WORDV) 

299 LOOKUPWORD() 

300 HI!WORDNODE := !CODEP 

301 CODEP := CODEP + 1 

302 LENGTH := 0 $) 

303 ELSE $( LENGTH := LENGTH + 1 

304 CHARV!LENGTH := CH $) 

305 I : = I + 1 

306 $) REPEAT 

307 $)1 

308 

309 

310 

311 . 
312 // LEX3 

313 

314 GET "SYNHDR" 

315 

316 LET RCH() BE 

317 $( CH := RDCH() 

318 

319 IF PRSOURCE & GETP=0 &. CH NE ENDSTREAMCH DO 

320 $( UNLESS LINECOUNT=PRLINE DO 

321 $( WRITEF("%I4 ", LINECOUNT) 

322 PRLINE := LINECOUNT $) 

323 WRCH(CH) $) 

324 

325 CHCOUNT := CHCOUNT + 1 

326 CHBUF! (CHC0UNT&.63) := CH $) 

327 

0
3

 
to

 
0
0

 

AND WRCHBUF() BE 

329 $( WRITES (" *N. . . " 

330 FOR P = CHCOUNT-63 TO CHCOUNT DO 

331 $( LET K = CHBUF!(P&63) 

332 UNLESS K=0 DO WRCH(K) $) 

333 NEWLINE() $) 

334 

335 

336 AND RDTAG(CHARI) BE 

337 $( CHARP, CHARV!1 := 1, CHARI 

338 
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The routine PERFOHMGET is called from NEXTSYMB to deal with the get- 

directive. It calls NEXTSYMB to read in the basic symbol following the word GET 

and a test is made to ensure that it is a string. Before selecting the new stream, it is 

necessary to save the current source stream, LINECOUNT and the value of CH in 

the. next three words of the vector GETV. The get-stream is then opened and 

selected and its first character read. When this stream is eventually exhausted, the 

previously selected stream is reinstated by the code occurring near the end of the 

body of NEXTSYMB. One should note the natural way in which NEXTSYMB and 

PERFORMGET are mutually recursive. 

Numerical constants are read in by a simple routine called READNUMBER. This 

expects the first digit of the number to be in CH and does the conversion for any 

base up to 16 as specified by the parameter RADIX. It uses an auxiliary function 

VALUE to convert each digit of the number into its binary value. Non-hexadecimal 

digits are given the artificially large value 100 so that the termination test in 

READNUMBER works correctly. 
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339 

340 

341 

342 

343 

344 

345 

346 

347 

348 

349 

350 AND 

351 

352 

353 

354 

355 

356 

357 

358 

359 

360 

361 

362 

363 

364 

365 

366 AND 

367 

368 

369 

370 

371 

372 

373 

374 

375 

376 

377 

378 AND 

379 

380 

381 

$( ECHO 

UNLESS 1A'<=CH<='Z' | 

'0'<=CH<='91 | 

CH='.1 BREAK 

CHARP := CHARP+1 

CHAR?!CHARP := CH $) REPEAT 

CHAR?!0 := CHARP 

WORDSIZE := PACKSTRING(CHARV, WORD?) $) 

PERFORMGETO BE 

$( NEXTSYMBO 

UNLESS SYMB=S.STRING THEN SYNREPORT(97) 

GETV!GETP := SOURCESTREAM 

GETV!(GETP+1) := LINECOUNT 

GET?!(GETP+2) := CH 

GETP := GETP + 3 

LINECOUNT := 1 

SOURCESTREAM FINDINPUT(WORD?) 

IF SOURCESTREAM=0 THEN SYNREPORT(96,WORD?) 

SELECTINPUT(SOURCESTREAM) 

ECHO $) 

READNUMBER(RADIX) BE 

$( LET D = ?ALUE(CH) 

DEC?AL := D 

IF D>=RADIX DO SYNREP0RT(33) 

$( ECHO 

D := ?ALUE(CH) 

IF D>=RADIX RETURN 

DEC?AL := RADIX*DEC?AL + D $) REPEAT 

?ALUE(CH) = '0'<=CH<='91 -> CH-'0', 

'A'<=CH<='F' -> CH-'A'+10, 

100 



98 The lexical and syntax analyser 

Finally, the function RDSTRCH is used to read a single string character allowing 

for the escape conventions that are available in string and character constants. 

6.4 The applicative expression tree 

The result of syntax analysis is a tree structure called the applicative expression tree 

(or AE tree) which is an internal representation of the entire source program. 

Each node of the tree consists of a small number of consecutive words of store, the 

first of which always holds the integer code for an operator or keyword. The 

structure of the AE tree is given in table 6.1 in a BNF-like notation in which nodes 

are represented as lists of items enclosed in parentheses. The words that appear to 

Table 6.1 The structure of the AE tree 

E ::= NAME | (STRING, <packed characters>) | 
(NUMBER, <value>) | (TRUE) ] (FALSE) | 
(VALOF, C) | (LV, E) | (RV, E) ( 
(FNAP, E, E) | (FNAP, E, 0) | (MULT, E, E) | 
(DIV, E, E) | (REM, E, E) | (PLUS, E, E) | 
(MINUS, E, E) | (NEG, E) | (EQ, E, E) | (NE, E, E) | 
(LS, E, E) | (GR, E, E) | (LE, E, E) | (GE, E, E) | 
(NOT, E) | (LSHIFT, E, E) | (RSHIFT, E, E) | 
(LOGAND, E, E) | (LOGOR, E, E) | (EQV, E, E) | (NEQV, E, E) | 
(COND, E, E, E) | (TABLE, E) | (COMMA, E, E) 

NAME ::= (NAME, -, <packed characters>) 

C ::= (ASS, E, E) | (RTAP, E, E) | (RTAP, E, 0) | 
(GOTO, E) | (COLON, NAME, C, -) | (IF, E, C) | 
(UNLESS, E, C) | (WHILE, E, C) | (UNTIL, E, C) | 
(REPEAT, C) | (REPEATUNTIL, C, E) | 
(REPEATWHILE, C, E) | (TEST, E, C, C) | (BREAK) | 
(RETURN) | (FINISH) | (RESULTIS, E) | 
(FOR, NAME, E, E, 0, C) | 
(FOR, NAME, E, E, E, C) | 
(SWITCHON, E, C) | (CASE, E, C) | (ENDCASE) | 
(DEFAULT, C) | (LET, D, C) | 
(MANIFEST, CDEFS, C) | (STATIC, CDEFS, C) | 
(GLOBAL, CDEFS, C) | (SEQ, C, C) | 0 

CDEFS ::= (CONSTDEF, CDEFS, NAME, E) | 0 

D ::= (AND, D, D) | (VALDEF, NLIST, E) | 
(VECDEF, NAME, E) | (FNDEF, NAME, FPL, E, -) | 
(RTDEF, NAME, FPL, C. -) 

NLIST ;:= (COMMA, NAME, NLIST) | NAME 

FPL ::= NLIST I 0 
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AND RDSTRCHO = VALOF 

$(1 LET K = CH 

RCH() 

IF K=1 *N' DO SYNREPORT(34) 

IP K='**' DO 

$( IF CH=’*N' | CH='*S' | CH=1*T' DO 

$( $( IF CH='*N' DO LINECOURT :=LINECOUNT+1 

RCH( ) 

$) REPEATWHILE CH='*N’ | CH='*S' | CH='*T' 

UNLESS CH=1 * * 1 DO SYNREPORT(34) 

RCH( ) 

RESULTIS RDSTRCHO 

$) 

399 K : = CH 

400 IF CH='T' DO K : = 1 *T 

401 IF CH=1S1 DO K : = 1 *S 

402 IF CH=’N’ DO K : = 1 *N 

403 IF CH=1B’ DO K : = 1 *B 

404 IF CH=’P1 DO K : = 1 *p 

405 RCH() $) 

RESULTIS K $)1 

// SYN0 

GET "SYNHDR" 

LET NEWVEC(N) = VALOF 

$( TREEP := TREEP - N - 1 

IF TREEP<=TREEVEC DO 

$( REPORTMAX := 0 

SYNREPORT(98) $) 

RESULTIS TREEP $) 

420 AND LISTl(X) = VALOF 

421 $( LET P = NEWVEC(0) 

422 P!0 := X 

423 RESULTIS P $) 
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the left of ::= are analogous to syntactic categories and represent pointers to 

nodes in the AE tree. All other words appearing in the syntax denote the integer 

codes for the types of the nodes. In string and name nodes, the packed characters 

occupy as many computer words as they need. The value in a number node 

occupies one word. As a general rule, the AE tree structure can be derived from 

the BCPL syntax by taking each syntactic construction in turn, selecting a suitable 

keyword or operator to distinguish it and laying out the operands in the same 

order in which they appear in the source program. For instance, the command 

TEST E THEN Cl ELSE C2 

has the corresponding AE tree structure 

(TEST, E, Cl, C2) 

Elements of nodes which are used as working space in the translation phase or 

which are list pointers in name nodes are indicated by dashes. 

The syntax analysis is performed by the method of recursive descent, and since 

this process involves no backtracking it is possible to use a very simple scheme for 

the allocation of space used by AE tree nodes. Space for these nodes is taken 

from the vector called TREEVEC under the control of a pointer TREEP which 

initially points to its last word. Whenever a new node is required, the function 

NEWVEC is called with a parameter giving the node’s size. NEWVEC decrements 

TREEP by the appropriate amount, checks that there is still space left and then 

returns with a pointer to the node obtained. The only nodes of variable size are 

those for identifiers and string constants, and these are constructed using NEWVEC 

directly. The size of every other node depends only on its type and is conveniently 

constructed with the aid of one of the functions from LIST1 to LIST6 which take 

from one to six arguments respectively, specifying the element values of the 

created node. 

FORMTREE is the main function of the syntax analyser and, as such, its job is to 

initialise several variables and data structures that are used during syntax analysis. 

It starts by initialising the character input interface by allocating space for the 

circular buffer CHBUF, initialising certain counts and making the first call of RCH. 

If the input stream is exhausted at this stage, FORMTREE returns a value zero to the 

steering program to indicate that there are no more sections of source code to be 

compiled. Space is allocated for the vector GETV for use by PIJRFORMGET for the 

implementation of the get-directive. The vectors WORDV and CHARV are then 

allocated for use by NEXTSYMB and L00KUPW0RD for the analysis of variable 

length symbols. Finally the name table is allocated and initialised with entries for 

all the reserved words with the aid of DECLSYSWORDS as described above. 



The lexical and syntax analyser 101 

424 

425 AND LIST2(X, Y) = VALOF 

426 $( LET P = NEWVEC(l) 

427 P! 0, P! 1 := X, Y 

428 RESULTIS P $) 

429 

430 AND LIST3(X, Y, Z) = VALOF 

431 $( LET P = NEWVEC(2) 

432 P!0, P!1, P!2 := X, Y, Z 

433 RESULTIS P $) 

434 

435 AND LIST4(X, Y, Z, T) = VALOF 

436 $( LET P = NEWVEC(3) 

437 P! 0, P!1, P!2, P!3 := X, Y, Z, T 

438 RESULTIS P $) 

439 

440 AND LIST5(X, Y, Z, T, U) = VALOF 

441 $( LET P = NEWVEC(4) 

442 P!0, P!1, P!2, P!3, P!4 := X, Y, Z, T, U 

443 RESULTIS P $) 

444 

445 AND LIST6(X, Y, Z, T, U, V) = VALOF 

446 $( LET P = NEWVEC(5) 

447 P!0, P!l, P! 2, P!3, P!4, P!5 := X, Y, Z, T, U, V 

448 RESULTIS P $) 

449 

450 AND FORMTREE() = VALOF 

451 $(1 LET V = VEC 63 

452, CHBUF := V 

453 FOR I = 0 TO 63 DO CHBUF!I := 0 

464 CHCOUNT :=0 

455 LINECOUNT, PRLINE 1, 0 

456 RCH() 

457 IF CH=ENDSTREAMCH RESULTIS 0 

458 

459 $( LET V = VEC 20 // for get-streams 

460 GETV, GETP, GETT := V, 0, 20 

461 

462 $( LET V = VEC 128 

463 WORDV := V 

464 

465 $( LET V = VEC 256 

466 CHARV, CHARP := V, 0 
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The variables REC. P and REC. L are used in SYNREPORT in the code dealing 

with the recovery after syntax errors. They must therefore be initialised before the 

first call of NEXTSYMB. At this point there is a compiler debugging option built into 

the program to assist implemented who are bootstrapping the compiler. It is 

controlled by OPTION! 1 which is set by the steering program. When it is set, the 

compiler does not perform syntax analysis but executes a simple loop that prints 

the integer code for each basic symbol of the source program together with the 

characters held in WORDV. A section of BCPL program is syntactically equivalent to 

a block body and so is read by the function RDBLOCKBODY described later. 

FORMTREE is typical of a kind of function, which occurs quite often in large 

BCPL programs, to initialise variables and allocate workspace before calling the 

procedure that does the work. Such a sequence of initialising statements is 

structurally simple but none-the-less important since forgetting to initialise a 

variable can lead to obscure runtime errors. Using tagged section brackets to close 

more than one section is not normally recommended, but the use of $) 1 at the end 

of FORMTREE to close six sections is perfectly satisfactory since the logical structure 

of this function is so simple. 

When a syntactic error is detected, the routine SYNREPORT is called with an 

integer argument specifying the nature of the error. This routine prints a suitable 

message giving the approximate line number of the error and the current 

contents of the circular buffer. Unless too many errors have already been 

detected, SYNREPORT tries to resume syntax analysis at a sensible place. It first 

reads in basic symbols until the end of the current line is reached, or LET, AND 

or a section bracket is found, and then makes a non-local jump by the call 

LONG JUMP (.REC. P, REC.L) to the current recovery point. 
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467 

468 $( LET V = VEC NAMETABLESIZE 

469 NAMETABLE := V 

470 FOE I = 0 TO NAMETABLESIZE DO NAMETABLE!I := 0 

471 DECLSYSWORDS() 

472 

473 REC.P, EEC.L := LEVEL(), L 

474 

475 L: NEXTSYMBQ 

476 

477 IF OPTION!! DO // LEX debugging option 

478 $( WEITEF("^I3 ??S*N" , SYMB, WOBDV) 

479 IF SYMB=S.END RESULTIS 0 

480 GOTO L $) 

481 

482 $( LET A = RDBL0CKB0DY() 

483 UNLESS SYMB=S.END DO SYNREPORT(99) 

484 

485 RESULTIS A $)1 

486 

487 

488 

489 AND SYNEEPORT(N, A) BE 

490 $( REPOETCOUNT := REPORTCOUNT + 1 

491 WRITEF ( " *NSYNTAX ERROR NEAR LINE %N: ", LINECOUNT) 

492 SYNMESSAGE(N, A) 

493 WRCHBUFO 

494 IF REPORTCOUNT GR REPOHTMAX DO 

495 $( WRITES("*NC0MPILATI0N ABORTED*N") 

496 STOP(8) $) 

497 NLPENDING := FALSE 

498 

499 UNTIL SYMB=S.LSECT | SYMB=S.RSECT | 

500 SYMB=S.LET | SYMB=S.AND | 

501 SYMB=S.END | NLPENDING DO NEXTSYMB() 

502 LONGJUMP(REC.P, REC.L) $) 

503 

504 AND SYNMESSAGE(N, A) BE 

505 $( LET S = VALOF SWITCHON N INTO 

506 $( DEFAULT: A := N; RESULTIS "ERROR %’S" 

507 
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508 CASE 91: RESULTIS OUT OF CONTEXT" 

509 CASE 94: RESULTIS "ILLEGAL CHARACTER" 

510 CASE 96: RESULTIS "NO INPUT %S" 

511 CASE 97: RESULTIS "BAD GET DIRECTIVE" 

512 CASE 98: RESULTIS "PROGRAM TOO LARGE" 

513 CASE 99: RESULTIS "INCORRECT TERMINATION" 

514 

515 CASE 8:CASE 40:CASE 43: 

516 RESULTIS "NAME EXPECTED" 

517 CASE 6: RESULTIS EXPECTED" 

518 CASE 7: RESULTIS EXPECTED" 

519 CASE 9: RESULTIS "UNTAGGED '$)' MISMATCH" 

520 CASE 32: RESULTIS "ERROR IN EXPRESSION" 

521 CASE 33: RESULTIS "BAD NUMBER" 

522 CASE 34: RESULTIS "BAD STRING OR CHARACTER CONSTANT 

523 CASE 15: CASE 19:CASE 41: RESULTIS MISSING" 

524 CASE 30: RESULTIS "BAD CONDITIONAL EXPRESSION" 

525 CASE 42: RESULTIS "BAD PROCEDURE HEADING" 

526 CASE 44: 

527 CASE 45: RESULTIS "BAD DECLARATION" 

528 CASE 50: RESULTIS "UNEXPECTED 

529 CASE 51: RESULTIS "ERROR IN COMMAND" 

530 CASE 54: RESULTIS "'ELSE' EXPECTED" 

531 CASE 57: 

532 CASE 58: RESULTIS "BAD FOR-LOOP" 

533 CASE 60: RESULTIS "'INTO' EXPECTED" 

534 CASE 61: CASE 62: RESULTIS : 1 EXPECTED" 

535 CASE 63: RESULTIS "’**/' MISSING" 

536 $) 

537 

538 WRITEF(S A) $) 

539 

540 

541 . 

542 // SYN1 

543 

544 GET "SYNHDR" 

545 

546 LET BDBLOCKBODYO = VALOF 

547 $(1 LET P, L = REC.P, BEC.L 

548 LET A = 0 

549 
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6.5 RDBLOCKBODY, RDSEQ, RDCDEFS, and RDSECT 

RDBLOCKBODY is the function which performs the analysis of the body of a block 

or compound command and yields the corresponding AE tree representation. A 

block body is basically a command sequence, possibly preceded by a sequence of 

declarations. The kind of a declaration can be determined from its first symbol. If 

it is MANIFEST, STATIC or GLOBAL, then the body of the declaration is enclosed in 

section brackets and is read by the call RDSECT (RDCDEFS ). The function RDSECT 

deals with the matching of section brackets, and RDCDEFS is a function which will 

read a sequence of constant definitions of the form 

<name>=E or <name>:E 

Having read the declaration, the block body is read by a call of RDBLOCKBODY and 

the appropriate node constructed. 

A let-declaration consists of the word LET followed by a sequence of definitions 

connected by ANDs. The definitions are read by repeated calls of RDEF while SYMB 

has the value S . AND. The rest of the block body is read by a call of RDBLOCKBODY. 

The command labelled RECOVER is the main recovery point after syntactic 

errors. This label and the current stack pointer (obtained by a call for LEVEL) are 

assigned to the global variables REC . L and REC . P for use by SYNREPORT. The old 

values of REC. P and REC . L are saved and restored appropriately. 

If the block body does not start with a declaration, then it must be a command 

sequence and this is read by a call for RDSEQ. Since semicolons are only necessary 

to separate commands which would otherwise elide, they may often be omitted 

and thus the end of a sequence must be detected by the presence of a closing 

section bracket or symbol S .END rather than by the absence of a semicolon. The 

call IGN0RE( S. SEMICOLON) ignores semicolons by calling NEXTSYMB if the 

current symbol is a semicolon. The commands of the sequence are read in by calls 

for RCOM. 
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550 

551 

552 

553 

554 

555 

556 

557 

558 

559 

560 

561 

562 

563 

564 

565 

566 

567 

568 

569 

570 

571 

572 

573 

574 

575 

576 

577 

578 

579 

580 

581 

582 

583 

584 AND 

585 

586 

587 

588 

589 

590 

591 

REC.P, REC.L := LEVEL(), RECOVER 

IGN0RE(S.SEMICOLON) 

SWITCHON SYMB INTO 

$(S CASE S.MANIFEST: 

CASE S.STATIC: 

CASE S.GLOBAL: 

$( LET OP = SYMB 

NEXTSYMB() 

A := RDSECT(RDCDEFS) 

A := LIST3(OP, A, RDBLOCKBODY()) 

ENDCASE $) 

CASE S.LET: NEXTSYMB() 

A := RDEF() 

RECOVER: WHILE SYMB=S.AND DO 

$( NEXTSYMBO 

A := LIST3(S.AND, A, RDEF()) $ 

A := LIST3(S.LET, A, RDBLOCKBODY()) 

ENDCASE 

DEFAULT: A := RDSEQ() 

UNLESS SYMB=S.RSECT | SYMB=S.END DO 

SYNREPORT(51) 

CASE S.RSECT: CASE S.END: 

$)S 

REC.P, REC.L := P, L 

RESULTIS A $)1 

RDSEQO = VALOF 

$( LET A = 0 

IGN0RE(S.SEMICOLON) 

A := RCOM() 

IF SYMB=S.RSECT | SYMB=S.END RESULTIS A 

RESULTIS LIST3( S . SEQ, A, RDSEQO) $) 
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The BCPL rule concerning the automatic insertion of closing section brackets is 

implemented by the function RDSECT. When RDSECT is called the current symbol 

is an opening section bracket whose tag is in a tree node poit ted to by W0RBN0DE. 

This pointer is held in the local variable TAG for later comparison with the tag of 

the closing bracket. The parameter of RDSECT is a function to analyse the text 

between the section brackets. This function will be RDBLOCKBODY, RDCDEFS or 

RDSEQ. These functions should read until a closing section bracket is reached. 

RDSECT checks for the closing bracket and if one is not found a report is 

generated. Its tag is then compared with the tag of the opening section bracket 

and NEXTSYMB called if they match. If the tags do not match and if the closing 

bracket has a null tag then an error is reported. Notice that, if the tags do not 

match and the closing bracket is not null, then NEXTSYMB is not called, leaving 

S YMB containing the closing section bracket. This, in effect, inserts an appropriate 

closing section bracket for the current level. 

The function RNAME is called when a name is expected; it first checks that the 

current symbol is a name and then yields as result the value of W0RDN0DE which 

will have been set by the call of L00KUPW0RD in the lexical analyser. One should 

note that all occurrences of the same name yield pointers to the same node. This 

simplifies name comparison in the translation phase of the compiler. 

RNAMELIST is a function that reads a list of names separated by commas. 

IGNORE and CHECKFOR are routines that are used to facilitate the treatment of 

delimiter symbols. 
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592 AND RDCDEFSO = VALOF 

593 $(1 LET A, B = 0, 0 

594 LET PTR = 3A 

595 LET P, L = REC.P, REC.L 

596 REC .P, REC.L := LEVEL(), REC 

597 

598 $( B := RNAME() 

599 TEST SYMB=S.EQ | SYMB=S.COLON THEN NEXTSYMB() 

600 ELSE SYNREPORT(45) 

601 !PTR := LIST4(S.CONSTDEF, 0, B, REXP(0)) 

602 PTR := SH2!(!PTR) 

603 REC: IGN0RE(S.SEMICOLON) $) REPEATWHILE SYMB=S.NAME 

604 

605 REC.P, REC.L := P, L 

606 RESULTIS A $)1 

607 

608 AND RDSECT(R) = VALOF 

609 $( LET TAG, A = WORDNODE, 0 

610 CHECKFOR(S.LSECT, 6) 

611 A := R() 

612 UNLESS SYMB==S . RSECT DO SYNREPORT( 7) 

613 TEST TAG=WORDNODE 

614 THEN NEXTSYMBO 

615 ELSE IF WORDNODE=NULLTAG DO 

616 $( SYMB := 0 

617 SYNREPORT(9) $) 

618 RESULTIS A $) 

619 

620 

621 AND RNAMELISTO = VALOF 

622 $( LET A = RNAMEQ 

623 UNLESS SY1£B=S. COMMA RESULTIS A 

624 NEXTSYMB() 

625 RESULTIS LIST3( S. COMMA, A, RNAMELISTO) $) 

626 

627 

628 AND RNAME() = VALOF 

629 $( LET A = W0RDN0DE 

630 CHECKFOR(S.NAME, 8) 

631 RESULTIS A $) 

632 

633 AND IGN0RE(ITEM) BE IF SYMB=ITEM DO NEXTSYMBQ 

634 
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6.6 The analysis of expressions 

Expressions are composed of basic expressions connected by infixed operators. 

They are parsed by the two functions BBEXP and BEXP. BBEXP reads a basic 

expression and yields as result its AE tree form, and BEXP reads a general 

expression and is primarily concerned with the parsing of infixed operators. Both 

BBEXP and BEXP are called with the first symbol of the expression in SYMB and on 

exit SYMB contains the first symbol following the expression read. 

BBEXP switches on SYMB to determine which kind of basic expression is present 

and an error message is generated if SYMB cannot start an expression. If the 

current symbol is TBUE, FALSE, or a name, then the node pointed to by W0BDN0DE 

is the AE tree representation of the basic expression. If the current symbol is a 

string, then a node is obtained by a call for NEWVEC and the string copied into it. 

The number of words required to hold the string was computed when the lexical 

analyser packed the string and it was left in 1OBDSIZE. If the current symbol is a 

number, then a suitable number node is constructed using the value in DECVAL. A 

left parenthesis introduces a bracketed expression. The enclosed expression is 

read by the call BEXP (0) and then the matching parenthesis is checked. The body 

of a valof-expression is a command and this is read by a call for BOOM. The 

remaining cases in BBEXP are monadic expression operators of various binding 

powers. The operands are read in by suitable calls of BEXP. If the operand of 

monadic minus is a number then its numerical value is negated. 
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635 AND CHECKFOE(ITEM, N) BE 

636 $( UNLESS SYMB=ITEM DO SYNREPORT(N) 

637 NEXTSYMBO $) 

638 

639 . 

640 // SYN2 

641 

642 GET "SYNHDR" 

643 

644 LET RBEXP() = VALOF 

645 $(1 LET A, OP = 0, SYMB 

646 

647 SWITCHON SYMB INTO 

648 

649 $( DEFAULT: SYNREPORT(32) 

650 

651 CASE S.TRUE: 

652 CASE S.FALSE: 

653 CASE S.NAME: 

654 A := WORDNODE 

655 NEXTSYMBO 

656 RESULTIS A 

657 

658 CASE S.STRING: 

659 A := NEWVEC(WORDSIZE+1) 

660 A!0 := S.STRING 

661 FOR I = 0 TO WORDSIZE DO A!(I+1) := WORDY!I 

662 NEXTSYMBO 

663 RESULTIS A 

664 

665 CASE S.NUMBER: 

666 A := LIST2(S.NUMBER, DECVAL) 

667 NEXTSYMBO 

668 RESULTIS A 

669 

670 CASE S.LPAREN: 

671 NEXTSYMBO 

672 A := REXP(0) 

673 CHECKFOR(S.RPAREN, 15) 

674 RESULTIS A 

675 

676 CASE S.VALOF: 

677 NEXTSYMBO 

678 RESULTIS LIST2(S.VALOF, RCOM())) 
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EEXP is the function that parses a general arithmetic expression. The left- and 

right-hand precedence of operators control the analysis. The right-hand operand 

of any operator is read by a call for EEXP with the operator’s right-hand 

precedence as argument. On entry, it uses EBEXP to read the basic expression that 

starts the general expression and then switches on the symbol that follows. If this 

symbol is not an infixed operator, then the entire expression has been read and 

EEXP returns. If the symbol is a left parenthesis then a function application has 

been encountered and it is parsed by reading in the actual parameters, if any, and 

then checking for the right parenthesis. Every other infixed operator has its left 

precedence checked with the formal parameter of EEXP to determine whether it 

may be incorporated into the result. If the test succeeds, then the right-hand 

operand is read by a call of EEXP using the operator’s right-hand precedence. 

Within the program the operator’s left and right precedence values are usually 

held in the local variables P and Q respectively and the parsing is performed by the 

statements labelled DYADIC on line 759. 

N is the formal parameter of EEXP, OP is the operator and A is a local variable 

which holds the AE tree form of the expression to the left of the operator. For left 

associative operators, the left and right precedences are equal; such operators are 

parsed by setting P and then jumping to LASSOC where Q is set equal to P before 

executing the statement labelled DYADIC. After reading the right hand operand 

and constructing a suitable tree node, EEXP executes the switch again and the 

process is repeated until either there are no more infixed operators or one is 

encountered with insufficient left precedence. 
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679 

680 CASE S.VECAP: OP := S.RY 

681 CASE S.LV: 

682 CASE S.RY: NEXTSYMBO; RESULTIS LIST2(0P, REXP(35)) 

683 

684 CASE S .PLUS: NEXTSYMBO; RESULTIS REXP(34) 

685 

686 CASE S.MINUS: NEXTSYMBO 

687 A := REXP(34) 

688 TEST HI!A=S.NUMBER 

689 THEN H2!A := - H2!A 

690 ELSE A := LIST2(S.NEG, A) 

691 RESULTIS A 

692 

693 CASE S .NOT: NEXTSYMBO 

694 RESULTIS LIST2(S.NOT, REXP(24)) 

695 

696 CASE S.TABLE:NEXTSYMBO 

697 RESULTIS LIST2(S.TABLE, REXPLISTO) $)1 

698 

699 

700 AND REXP(N) = VALOF 

701 $(1 LET A = RBEXPO 

702 

703 LET B, C, P, Q = 0, 0, 0, 0 

704 

705 $(2 LET OP = SYMB 

706 

707 IF NLPENDING RESULTIS A 

708 

709 SWITCHON OP INTO 

710 $(S 

711 DEFAULT: RESULTIS A 

712 

713 CASE S.LPAREN: NEXTSYMBO 

714 B := 0 

715 UNLESS SYMB=S.RPAREN DO B := REXPLISTO 

716 CHECKFOR(S.RPAREN, 19) 

717 A := LIST3(S.FNAP, A, B) 

718 LOOP 

719 
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The parsing of relational operators is special since they are non-associative and 

since the logical operator ‘and’ needs to be inserted between the individual 

relations of an extended relation. The conditional expression is also exceptional 

since it has two right-hand operands separated by a comma. 

BCPL allows the programmer to omit the semicolons that separate commands 

in most instances and, in particular, between commands which are on different 

lines. To ensure that this will always work, the language states that a dyadic 

operator may not be the first symbol of a line. This is implemented by inspecting 

NLPEN'DIN'G before executing the switch in REXP. NLPENDING is set in NEXTSYMB 

as described above. 
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720 CASE S.VECAP: P := 40; GOTO LASSOC 

721 

722 CASE S.REM:CASE S.MULT:CASE S.DIV: P := 35; GOTO LASSOC 

723 

724 CASE S.PLUS:CASE S.MINUS: P := 34; GOTO LASSOC 

725 

726 CASE S.EQ:CASE S.NE: 

727 CASE S.LE:CASE S.GE: 

728 CASE S.LS:CASE S.GR: 

729 IF N>=30 RESULTIS A 

730 

731 $(R NEXTSYMBO 

732 B := REXP(30) 

733 A := LIST3(OP, A, B) 

734 TEST C=0 THEN C := A 

735 ELSE C := LIST3(S.LOGAND, C, A) 

736 A, OP := B, SYMB $)R REPEATWHILE S.EQ<=OP<=S.GE 

737 

738 A := C 

739 LOOP 

740 

741 CASE S.LSHIFT:CASE S.RSHIFT: P, Q := 25, 30; GOTO DYADIC 

742 

743 CASE S.LOGAND: P := 23; GOTO LASSOC 

744 

745 CASE S.LOGOR: P := 22; GOTO LASSOC 

746 

747 CASE S.EQV:CASE S.NEQV: P := 21; GOTO LASSOC 

748 

749 CASE S.COND: 

750 IF N>=13 RESULTIS A 

751 NEXTSYMBO 

752 B := REXP(0) 

753 CHECKFOR(S.COMMA,.30) 

754 A := LIST4(S.COND, A, B, BEXP(0)) 

755 LOOP 

756 

757 LASSOC: Q := P 

758 

759 DYADIC: IF N>=P RESULTIS A 
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6.7 The analysis of definitions 

The function RDEF is called after encountering the basic symbol LET or AND to 

read the definition. There are four forms of definition in BCPL: function 

definitions, routine definitions, simple definitions and vector definitions. They all 

start with a name, and a simple definition may start with a name list. The name or 

name list is read in by a call for RNAMELIST and its tree form held in the local 

variable N. The symbol that follows should either be a left parenthesis indicating 

the presence of a function or routine definition or an equals sign indicating a 

simple or vector definition. 

For a function or routine definition, a check is made to ensure that N is a name 

(not a name list) and then the formal parameter list is read. The defining operator, 

which should be either the word BE or an equals sign, distinguishes between the 

two possible kinds of definition. 

The body of a routine is a command read by RCOM and the body of a function is 

an expression read by REXP. The fifth element of the AE node for function and 

routine definitions is working space used by the next stage of the compiler. 

Simple and vector definitions are distinguished by the symbol that follows the 

equals sign. If it is VEC then a vector definition has been encountered, and it is 

necessary to check that N is a name. 
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760 

761 

762 

763 $)S 

764 $)2 

765 $)1 

766 

767 LET 

768 

769 

770 

771 

772 

773 

774 

775 

776 

777 

778 

779 LET 

780 $(1 

781 

782 

783 

784 $( 

785 $( 

786 

787 

788 

789 

790 

791 

792 

793 

794 

795 

796 

797 

798 

799 

800 

NEXTSYMB() 

A := LIST3(OP, A, REXP(Q)) 

LOOP 

REPEAT 

REXPLISTO = VALOF 

$(1 LET A = 0 

LET PTR = 3A 

$( LET B = REXP(0) 

UNLESS SYMB=S.COMMA DO $( !PTR := B 

RESULTIS A $) 

NEXTSYMB() 

!PTR := LIST3(S.COMMA, B, 0) 

PTR := SH3!(!PTR) $) REPEAT 

$)1 

RDEF() = VALOF 

LET N = RNAMELISTO 

SWITCHON SYMB INTO 

CASE S.LPAREN: 

LET A = 0 

NEXTSYMB() 

UNLESS HI!N=S.NAME DO SYNREPORT(40) 

IF SYMB=S.NAME DO A := RNAMELISTO 

CHECKFOR(S.RPAREN, 41) 

IF SYMB=S.BE DO 

$( NEXTSYMBO 

RESULTIS LIST5(S.RTDEF, N, A, RCOM( ) , 0) $) 

IF SYMB=S.EQ DO 

$( NEXTSYMBO 

RESULTIS LIST5(S.FNDEF, N, A, REXP(0) , 0) $) 

SYNREPORT(42) $) 
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6.8 The analysis of commands 

Commands are parsed by the functions EBCOM and ECOM. The process used is 

similar to that used in the parsing of expressions, only, since there are so few 

infixed command operators, it is not necessary to use precedence. EBCOM parses 

basic commands and ECOM analyses general commands. 

The kind of basic command is determined by its first symbol in all but three 

cases, which are assignments, routine commands and labelled commands. These 

three can be distinguished by reading in an expression and then looking at the 

symbol that follows. If it is the assignment operator, then the right-hand side is 

read and an assignment node is constructed. If the symbol is a colon, a check is 

made to ensure that the expression read was a name and then a labelled-command 

node is constructed. The fourth element in this node is used as working space by 

the next phase of the compiler. If the symbol is anything else, then a routine 

command must have been encountered. It would have been parsed as a function 

application by EEXP; the node is checked and, if correct, is converted into a 

routine application node. 
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801 DEFAULT: SYNREPORT(44) 

802 

803 CASE S.EQ: 

804 NEXTSYMBO 

805 IF SYMB=S.VEC DO 

806 $( NEXTSYMBO 

80V UNLESS HI!N=S.NAME DO SYNREPORT(43) 

808 RESULTIS LIST3(8.VECDEF, N, REXP(0)) $) 

809 RESULTIS LIST3(S.VALDEF, N, REXPLIST()) 

810 $) $)1 

811 . 

812 // SYN4 

813 

814 GET "SYNHDR" 

815 

816 LET RBCOM() = VALOF 

817 $(1 LET A, B, OP = 0, 0, SYMB 

818 

819 

820 

821 

822 

823 

825 

825 

826 

827 

828 

829 

830 

831 

832 

833 

834 

835 

836 

837 

838 

839 

840 

841 

SWITCHON SYMB INTO 

$( DEFAULT: RESULTIS 0 

CASE S.NAME:CASE S.NUMBER:CASE S.STRING: 

CASE S.TRUE:CASE S.FALSE: 

CASE S.LV:CASE S.RV:CASE S.VECAP: 

CASE S.LPAREN: 

A := REXPLISTO 

IF SYMB=S.ASS THEN 

$( OP := SYMB 

NEXTSYMBO 

RESULTIS LIST3(OP, A, REXPLISTO) $) 

IF SYMB=S.COLON THEN 

$( UNLESS HI!A=S.NAME DO SYNREPORT(50) 

NEXTSYMB() 

RESULTIS LIST4(S.COLON, A, RBCOM(), 0) 

IF HI! A=S . FNAP THEN 

$( HI!A := S.RTAP 

RESULTIS A $) 

$) 
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All other forms of command are determined by the first symbol and they are 

parsed in a straightforward way. Delimiting symbols which must be present are 

checked by suitable calls of CHECKFOR and the optional occurrences of DO are 

dealt with by the call IGN0RE(S . DO). If the command starts with a section bracket 

then it is a block or compound command, and is read by a call for RDSECT which 

implements the section bracket tagging rule. Its argument RDBLOCKBODY is a 

function which reads the text between the section brackets. The AE form of the 

basic commands LOOP, BREAK, ENDCASE, FINISH, and RETURN is the node in the 

name tree pointed to by WORDNODE. 
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842 

843 

844 

845 

846 

847 

848 

849 

850 

851 

852 

853 

854 

855 

856 

857 

858 

859 

860 

861 

862 

863 

864 

865 

866 

867 

868 

869 

870 

871 

872 

873 

874 

875 

876 

877 

878 

879 

880 

881 

882 

SYNREPORT(51) 

RESULTIS A 

CASE S.GOTO:CASE S.RESULTIS: 

NEXTSYMB() 

RESULTIS LIST2(0P, REXP(0)) 

CASE S.IF:CASE S.UNLESS: 

CASE S.WHILE:CASE S.UNTIL: 

NEXTSYMB() 

A := REXP(0) 

IGNORE(S.DO) 

RESULTIS LIST3(0P, A, RCOM()) 

CASE S.TEST: 

NEXTSYMB() 

A := REXP(0) 

IGNORE(S.DO) 

B := RCOM() 

CHECKFOR(S.OR, 54) 

RESULTIS LIST4(S.TEST, A, B, RCOM()) 

CASE S.FOR: 

$( LET I, J, K = 0, 0, 0 

NEXTSYMB() 

A := RNAME() 

CHECKFOR(S.EQ, 57) 

I := REXP(0) 

CHECKFOR(S.TO, 58) 

J := REXP(0) 

IF SYMB=S.BY DO $( NEXTSYMB() 

K := REXP(0) $) 

IGNORE(S.DO) 

RESULTIS LIST6(S.FOR, A, I, J, K, RCOM()) $) 

CASE S.LOOP:CASE S.BREAK: 

CASE S.RETURN:CASE S.FINISH:CASE S.ENDCASE: 

A := WORDNODE 

NEXTSYMB() 

RESULTIS A 
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RCOM uses RBCOM to read the basic command; it then checks for occurrences of 

REPEAT, REPEATWHILE and REPEATUNTIL and constructs suitable repeat nodes 

as necessary. RBCOM is prepared to read an empty command, but RCOM checks that 

the command is not null. Empty commands may only appear after labels. 

Exercises 

1. List all the changes needed to the syntax analyser described in this chapter in 

order to deal with a new operator called ABS whose precedence is the same as 

monadic minus, and also the operator % described in section 4.9. 

2. List the changes needed to implement the field-selector extension described 

in section 4.8. 

3. List the changes that would be necessary to implement operators of the form 

<op>:= where <op> may be any dyadic arithmetic or bit-pattern operator. No 

space is permitted between <op> and :=. These new operators should behave 

syntactically just like :=. 
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883 

884 

885 

886 

887 

888 

889 

890 

891 

892 

893 

894 

895 

896 

897 

898 

899 

900 

901 

902 $)1 

903 

904 AND 

905 $(1 

906 

907 

908 

909 

910 

911 

912 

913 

914 

915 

916 

917 

918 $)1 

CASE S.SWITCHON: 

NEXTSYMB() 

A := REXP(0) 

CHECKFOR(S.INTO, 60) 

RESULTIS LIST3(S.SWITCHON, A, RDSECT(RDSEQ)) 

CASE S.CASE: 

NEXTSYMB() 

A := REXP(0) 

CHECKFOR(S.COLON, 61) 

RESULTIS LIST3(S.CASE, A, RBCOM()) 

CASE S.DEFAULT: 

NEXTSYMB() 

CHECKFOR(S.COLON, 62) 

RESULTIS LIST2(S.DEFAULT, RBCOMO) 

CASE S.LSECT: 

RESULTIS RDSECT(RDBLOCKBODY) 

RCOM() = VALOF 

LET A = RBCOM() 

IF A=0 DO SYNREPORT(51) 

WHILE SYMB=S.REPEAT | SYMB=S.REPEATWHILE | 

SYMB=S.REPEATUNTIL DO 

$( LET OP = SYMB 

NEXTSYMB() 

TEST OP=S.REPEAT 

THEN A := LIST2(OP, A) 

ELSE A := LIST3(0P, A, REXP(0)) $) 

RESULTIS A 



7 

Compiler portability 

7.1 Introduction 

It is possible to construct a portable program in various ways by using, for 

instance, a standard language such as Fortran, or by writing the program in some 

suitable macro language. Another approach that is sometimes worthwhile is to use 

a non-standard but particularly suitable language, even though this may mean 

transferring its compiler to the target machine before transferring the application 

program. At first sight this seems to be an expensive way to proceed, but there are 

compensating advantages. For instance, compared with a macro code, a high-level 

language is, in general, easier to program since its syntax can be less restrictive and 

it can gain greater linguistic power by greater use of syntactic and semantic 

context. A compiler is usually able to generate code several times faster than a 

macro generator and this is important if the application program is large and if 

much rewriting or continued program development is expected on the target 

machine. The efficiency of the object code generated by a compiler is often better 

than that produced by macro generators, and the intelligibility of diagnostics 

messages can also be better. 

A compiler is inherently a machine-dependent program since the part of it 

concerned with code generation must be rewritten for every different machine. A 

compiler also tends to be large, and large programs by their nature are less 

portable than small ones. However, if the language and its compiler are both 

designed with care, the work involved to transfer the implementation from one 

machine to another can be minimised. Such portability considerations have had a 

strong influence on the design of BCPL and its compiler. 

While the code generation part of a compiler is machine dependent, the rest can 

be written in such a way that only minimal changes are required when moving it to 

a new machine. It is normal to separate the machine dependent and independent 

parts so that the changes can be localised in a smaller area. To achieve this, the 

BCPL compiler is structured as in figure 7.1, where the syntactic phase is largely 

machine independent while the code generator is not. 

The choice of a suitable intermediate form was one of the key decisions in the 

design of the compiler since it affected the level of portability and efficiency 

obtainable. Many significantly different forms of interface were considered. It 

124 
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Fig. 7.1 The structure of the BCPL compiler 

could have been either a set of procedure calls for the syntactic phase to make on 

the code generator, or a data structure (such as a parse tree) to be handed to the 

code generator for compilation, or a partially compiled translation of the program 

in the form of a linear sequence of statements in some intermediate object code. 

The choice is, of course, a compromise. On the one hand, an intermediate code 

might have been chosen that was reasonably close to the machine language of a 

typical target computer, in which case the code generation would be relatively 

simple since most of the translation decisions would by that time have been made. 

Alternatively, the interface could have been much closer to the original source 

language giving the code generator much greater scope for global and local 

optimisation. 

One important consideration is that the transporting process is usually based on 

the interface code and so one must ensure that it can be written to magnetic tape 

and read without undue difficulty. Bearing in mind the immense difficulty that 

people often experience with tape when transferring alphanumeric card images, 

one should not underestimate the difficulty of transferring anything more 

complicated (such as re-entrant list structures of mixed binary and character data). 

One should also remember that the installer is usually far less familiar with the 

compiler design and its intermediate code than the donor of the system. Indeed 

the installer may spend more time trying to understand the compiler and the 

interface than the time he eventually needs to write a code generator. 

In practice the interface in most existing portable compilers is usually in the 

form of a linear sequence of simple statements in some intermediate code 

specifically designed for each language, even though greater compiled code 

efficiency can be obtained by using a more structured interface. 

7.2 OCODE 

The intermediate form for BCPL is called OCODE, and follows this pattern. It is 

described in full in Richards [11], It can be regarded as the assembly language of a 

simple abstract machine for BCPL. This machine has a store for variables 

consisting of equal-sized cells which can be addressed using integers in such a way 

that consecutive integers refer to adjacent cells. This store is subdivided into three 
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areas: a vector for global variables; an area for static variables; and the stack for 

local variables, arguments and anonymous results. The machine contains two 

registers used for addressing: G which points to the base of the global vector; and P 

which points to the region of stack belonging to the currently active procedure. 

To aid description, there is a variable S which holds the size of the current stack 

frame. Its value varies dynamically during execution as blocks are entered and 

left, but no central register need be provided for it since its value is always known 

at every point in the program. Many of the basic operations in the machine are 

concerned with loading, storing or modifying values on or near the top of the 

stack, and we will use P! (S-l) and P!(S-2) to denote the top two locations of 

the current stack frame. This notation is shown pictorially in figure 7.2. 

Current stack frame 

P!(S-2)p;(S-l) 

t* 

Fig. 7.2 The runtime stack 

IText free 

stack cell 

Previous stack frames 

Static variables are allocated storage cells that are addressed by internal 

symbolic labels of the form Ln where n is an integer. 

An OCODE statement consists of a keyword identifying the statement followed 

by a variable number of simple arguments. Most of these statements are seman¬ 

tically weak but sequences of them can easily be .used to form the reverse Polish 

translation of a BCPL program. 

Access to local variables is provided by three statements which can be specified 

as follows: 

LP n means S:=S+1; P!(S-l):=P!n 

LLP n means S:=S+1; P!(S-l):=P+n 

SP n means P!n:=P!(S-l); S:=S-1 

Similarly there are three statements (LG, LLG and SG) that provide access to global 

variables and three (LL, LLL and SL) that provide access to static ones. 

Numerical constants may be loaded using LN which is defined as follows: 

LNk means S:=S+11 P! (S-l):=k 



Compiler portability 127 

The statement 

LSTR k Cl C2 . . . Ck 

will load onto the stack a value which represents the string composed of the 

characters whose integer codes are Cl to Ck. 

The statements TRUE and FALSE load the corresponding truth values onto the 

stack. 

Each expression operator replaces its operands, taken from the top of the stack, 

by its result. For instance, MULT is defined as follows: 

MULT means P’ (S-2) := P! (S-2)*P! (S-l) ; S: =S-1 

Sixteen other dyadic expression operators are defined similarly. These are the 

integer operators DIV, HEM, PLUS and MINUS, the relational operators EQ, NE, LS, 

GR, LE and GE, and the logical (or bit-pattern) operators LSHIFT, RSHIFT, 

LOGAND,LOGOR,EQV and NEQV. 

There are three monadic expression operators defined as follows: 

NEG means P! ( S— 1) : = —P! (S— 1) 

NOT means P! (S-l) := NOT P! (S-l) 

RV means P!(S-l) := !(P!(S-l)) 

Assignments to simple variables may already be translated using SP, SG and SL 

defined above; however, a statement is required for indirect assignments, defined 

as follows: 

STIND means !(P!(S-l) ) : = P!(S-2); S:=S-2 

Conditional commands in BCPL require corresponding conditional statements 

in OCODE. These are JT Ln and JF Ln which cause the program to jump 

conditionally to the label Ln depending on whether the top item of stack 

represents true or false. The label is set by the statement LAB Ln at the appropriate 

place in the program. Unconditional jumps are compiled into JUMP or GOTO 

which are defined as follows: 

JUMP Ln means GOTO Ln 

GOTO means S:=S-1; GOTO P! S 

Occasionally it is necessary for the first phase of the compiler to tell the code 

generator where the top of the stack is, relative to P. This happens, for instance, 

when vectors are declared, or at the end of blocks. The OCODE statement to pass 

this information is STACK k, and its effect is to set S in the code generator to the 
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value k. A second directive, STORE, is provided so that the first phase of the 

compiler can indicate the point dividing the declarations at the head of a block 

from the body that follows. Its effect is to cause the code generator to compile code 

to standardise the runtime state of the machine so that all stacked items are 

physically held in their appropriate store locations rather than being held in 

central processor registers. Without such a directive it would be difficult for an 

optimising code generator to know when stacked items could be held safely in 

machine registers. 

The other OCODE statements relating to commands are SWITCHON, RES, 

RSTACK and FINISH, but these will not be described here. 

The mechanism for procedure calls and the passing of parameters requires 

special care since there is such diversity in the instructions available on different 

machines for subroutine jumps. Efficient coding of these calls is particularly 

important since they occur frequently. For instance, in the BCPL compiler for the 

IBM 370 there are 1370 procedure calls in 23 000 words of compiled code. At the 

moment when control is about to be transferred to the called procedure, the 

runtime stack has the form shown in figure 7.3. 

Stack frame for the Space for 

current procedure link Actual parameters 

t*— -4 
P Base of new 

stack frame 

Fig. 7.3 The stack at the moment of call 

The distance between the old and new stack frame pointers is a constant k which 

the compiler can determine for each call, being only dependent on the number of 

local variables and anonymous results that exist at the time. Since the parameters 

are always called by value, they can be evaluated and placed on the stack. Similarly 

the procedure entry point F is itself placed on the stack. The actual procedure call 

is made using FNAP k or RTAP k depending on whether the procedure should 

produce a result or not. 

The entry point of the procedure is marked by the statement 

ENTRY k Ln Cl C2 . . . Ck 

where Ln is the symbolic label for the entry point and Cl to Ck are the characters 

of the name of the procedure. The ENTRY statement is immediately followed by a 

SAVE statement whose argument indicates the number of formal parameters the 
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procedure has. The return from a procedure is caused by RTRN if there is no 

result, and by FNRN if there is a result to be returned. 

These six statements allow the code generator writer considerable freedom in 

the design of the calling sequence for any particular machine. For instance, it is 

not difficult to generate code in which the first few arguments of a call are passed 

in central registers, which is a strategy well worth adopting for many reasons. 

Static variables in BCPL are allocated storage cells at compile-time, using the 

ITEMN and ITEML statements. ITEMN k will allocate a static cell, giving it the initial 

value k where k is an integer, and ITEML Ln will allocate a static cell, giving it an 

initial value which represents the point in the program labelled Ln. Such static 

cells are themselves addressed by symbolic labels, which may be set by using the 

statement DATALAB Ln immediately preceding the corresponding ITEMN or 

ITEML statement. 

The statement GLOBAL n globl labl . • . globn labn causes the n global 

locations globl to globn to be initialised to values representing points in the 

program labelled labl to labn. 

7.2.1 Example 

As an example, the OCODE translation of the following program 

GLOBAL $( START:1; WRITEF:76 $) 

LET START() BE 

$( LET F(N) = N = 0 -> 1, N*F(N-1) 

FOR I = 1 TO 10 DO WRITEF( "F(*N) = /=N*N", I, F(I)) 

$) 

is 

STACK 2 

JUMP L2 

ENTRY 5 LI 83 84 65 82 84 SAFE 2 

DATALAB L4 ITEML L3 

JUMP L5 

ENTRY 1 L3 70 SAVE 3 

LN 0 LP 2 EQ JF L7 

LN 1 JUMP L6 

STACK 3 

LAB L7 STACK 5 

LP 2 LN 1 MINUS LL L4 FNAP 3 

LP 2 MULT 

LAB L6 

jump round the body of START 

entry to START 

allocate cell for F 

jump round the body of F 

entry to F 

test if N=0 

then load 1 else 

F(N-l) 

multiplied by N 
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FRRR 

STACK 2 

LAB L5 STORE 

LR 1 STORE JUMP L8 

LAB L9 STACK 5 

LSTR 11 70 40 37 78 41 

32 61 32 37 78 10 

LP 2 

STACK 9 LP 2 LL L4 FRAP 7 

LG 76 RTAP 3 

LP 2 LR 1 PLUS SP 2 

LAB L8 

LP 2 LR 10 LE JT L9 

STACK 2 

RTRR 

STACK 2 

LAB L2 STORE 

GLOBAL 1 

1 LI 

return with result 

end of declarations 

initialise the for-loop 

load arguments of WRITEF 

load the string 

"F(%R) = %R*R" 

load I 

call F( I) 

call WRITEF 

increment I 

loop again if I<=10 

exit from START 

initialise the global for START 

7.3 The code generator 

As has been seen, OCODE statements are simple and it is clear that code of 

reasonable quality could not be generated by translating only one OCODE 

statement at a time. Although it is impractical for the code generator to perform 

global flow analysis, there are other areas of optimisation that are possible. It can, 

for instance, perform local optimisation of register allocation and the selection of 

machine instructions. Considerable benefit may be gained from a carefully chosen 

global organisation. This includes the way that global and local variables are 

accessed, together with the details of the calling sequence, particularly the way in 

which registers are used to pass information to and from a called procedure. It is, 

for instance, well worthwhile to place the first few arguments in central registers of 

the machine if possible, and it is also a good idea to hold the result of a function call 

in the same register that is used for the first argument. Even on machines with 

many central registers it has been found to be a good strategy to re-use the 

arguments registers to hold anonymous results during expression evaluation. 

In order to perform the local optimisation, the code generator uses a simulated 

model of the state of the computation in the target machine. This model varies in 

complexity depending upon the level of optimisation desired. For many BCPL 

code generators, the model consists solely of a simulation of the runtime stack in 

which each item in the model represents an item held in the runtime stack. The 

possible values that can be simulated by these items usually include constants, 
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simple variables and values held in central registers, and it is often possible to 

represent the addition of an integer constant and one level of indirection. This 

degree of simulation allows the code generator to produce respectable code, but 

still remain relatively simple. In fact many code generators share much of the 

program concerned with the input of OCODE and the simulation of the abstract 

machine, and so when embarking on a new BCPL implementation it is well 

worthwhile taking as a basis an already existing code generator for a similar 

machine. 

We now describe some details of a typical code generator, with specific 

reference to one that was implemented for the XDS Sigma 7 (a 32-bit word- 

addressed multi-register machine). This code generator reads in each OCODE 

statement one at a time. If possible it just updates the simulated stack to represent 

the state of the computation after each statement, but if this is not possible it 

compiles some code in order to simplify the simulated model. Consider, for 

example, the translation of the BCPL statement 

X := V!2 

With suitable declarations of X and V the OCODE translation might be 

LN 2 

LG 100 

PLUS 

RV 

SP 3 

load the constant 2 

and load V 

add these values together 

indirect one level 

store the result in X 

At the time when the code generator reads the PLUS statement, the top two items 

of the simulated stack hold elements representing the constant 2 and the 

hundredth global variable. The result of the PLUS operation can be accom¬ 

modated in the model since the addition of a constant is provided for. Since 

indirection is also available, an item representing the entire expression V! 2 is on 

top of the simulated stack at the time the SP statement is encountered. 

Up to this point, no output has been produced. However, the SP statement 

necessitates the generation of some code. The code generator first checks whether 

optimisation is possible. For instance, if the top item of the simulated stack 

represents X+1 then it would be able to compile the BCPL statement into a single 

machine instruction. However, in this case it is not possible and the general 

assignment strategy is to compile a statement of the form 

STW, r 3,P 

where r is some general register holding the value of the right-hand side of the 

assignment, and 3, P is the machine-code address of X. Before this instruction can 
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be compiled, a suitable value of r must be chosen and code compiled to move the 

top item of the stack into it. This code is generated by the function call 

MOVETOANYCR( ARG1), where ARG1 points to the item in the model representing 

the topmost element of the stack. This function inspects ARG1 to see if it 

represents one of the constants that are permanently held in central registers, but 

if this is not the case it calls the function 8i0VET0ANYR( ARG1) to select a 

non-constant general register and to compile code to move ARG1 into it. If ARG1 

represents a value that already involves a register, then that register is chosen, 

otherwise it selects a register that is free (as described below). Code to move ARG1 

into this register is generated by the call MOVETOR( ARG1, r) which inspects ARG1 

for optimisable special cases while also providing an adequate translation for all 

other cases. 

By the algorithm just described, the code compiled for the statement X : = V! 2 

on the Sigma 7 is as follows: 

LW,R4 100,G load V into R4 

LW,R4 2,R4 load Y! 2 into R4 

STW,R4 3,P store it in X 

When a general register is required, as it was in MOVETOANYR, the allocation is 

performed by a function called NEXTR. The strategy is to test the registers in fixed 

sequence and to select the first one that is free. This test involves searching all the 

items in the simulated stack but, since this is usually small, the cost is not great. If 

no register is available, then one is obtained by compiling code to dump a 

simulated stack item into store. The item that is chosen is as far as possible from 

the free end of the stack. This is a reasonable algorithm for register allocation and 

it has the merit that it does not tamper with the top two items of the stack which is 

important if we wish to keep the logic of the code generator simple. 

Some BCPL code generators implement a simulation of the central registers in 

addition to the simulated stack. This allows optimisation of register use between 

statements such as one might expect in the compilation of 

A := B 

C := B 

For example, on the IBM 370 implementation of BCPL this simulation is fairly 

complete and requires several pages of code for its implementation. However, 

effective optimisation of this sort is possible even with an extremely simple model. 

Again the Sigma 7 implementation is used as an example. The contents of only 

one register is simulated at any time using the variables SLAVEREG, SLAVEK and 

SLAVEN. The only values that can be represented in this model are simple 

variables. SLAVEREG gives the number of the machine register that currently 

holds the value of the variable, SLAVEK indicates whether the variable is local, 
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global or static and SLAVEN is used to specify the corresponding relative address 

or label number. Whenever code is compiled that moves a simple variable into a 

register, the slave is updated. If the slave is empty when an assignment to a simple 

variable is made, the slave is updated appropriately and whenever code is 

compiled that invalidates the contents of the slave its contents are cleared. This 

may, for instance, be necessary after the compilation of an arithmetic instruction 

or an assignment to a simple variable. The slave must always be cleared on an 

indirect assignment since this can update any variable in store. 

7.4 The bootstrapping process and INTCODE 

In order to transfer BCPL to a new machine, it is necessary to write a new code 

generator for it. This can sometimes be written in BCPL and debugged on the 

donor machine. If this method is chosen it is usually best to generate assembly 

language which is then assembled and tested on the target machine. It is wise to 

defer most of the optimisation, since it complicates the code generator and 

increases the number of bugs, many of which will not be discovered until the 

compiled code is being tested on the target machine. 

More often the installer has no access to the donor machine, and he must then 

resort to bootstrapping the compiler from a kit. The BCPL kit originally consisted 

of the source and OCODE forms of the compiler. However, the currently 

preferred approach is to use a different intermediate code specifically designed 

for the bootstrapping operation. This code is called INTCODE and is a compact 

and extremely simple assembly code. Typically it is possible to implement an 

INTCODE assembler and interpreter in less than one week. 

Its purpose is to allow the installer to construct a temporary interpretive 

implementation on the target machine in the minimum time. This gives him the 

chance to learn the language and its compiler painlessly and allows him to write 

and debug the production code generator at his own installation. This method has 

been used many times and works well. 

7.4.1 The INTCODE machine 

The INTCODE machine has a store consisting of equal-sized locations addressed 

by consecutive integers. All INTCODE instructions have single and double length 

forms. The decision to use a double-length instruction depends partially upon the 

chosen field sizes, and is made by the INTCODE assembler. The central registers 

of the machine are as follows: 

A, B: the accumulator and auxiliary accumulator, 

C: the control register giving the location of the next instruction to be 

executed, — 
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D: the address register, used to hold the effective address of an instruction, 

P: a pointer used to address the current stack frame, and 

G: a pointer used to address the global vector. 

The format of an instruction comprises six fields as follows: 

Function part: 

Address field: 

D bit: 

P bit: 

Gbit: 

I bit: 

this is a three-bit field specifying one of the eight possible 

machine functions described below, 

this is a field holding a positive integer which is the initial value 

of D, 

a single bit which, when set, specifies that the initial value of D is to 

be taken from the following word, 

a single bit to specify whether P is to be added into D at the second 

stage of address evaluation, 

a single bit to specify whether G is to be added into D at the third 

stage of address evaluation, and 

this is the indirection bit: if it is set then D is replaced by the 

contents of the location addressed by D at the last stage of address 

evaluation. 

The effective address is evaluated the same way for every instruction indepen¬ 

dent of the particular machine function specified. 

The eight machine functions are given by table 7.1. 

Table 7.1 The INTCODE machine functions 

Mnemonic Operation Specification 

L Load B := A; A := D 
S Store ! D := A 
A Add A := A + D 
J Jump C := D 
T Jump if true IF A THEN C := D 
F Jump if false UNLESS A DO C := D 
K Procedure call D := P + D 

D!J2, D! 1 := P, C 
P, C := D, A 

X Execute operation (miscellaneous operations, mainly arithmetical or 
logical operating on A and B - see program text, page 
140 for details) 

7.4.2 INTCODE assembly language 

The assembly language for INTCODE has been designed to be compact and 

simple to assemble, but care has also been taken so that it can be read and modified 
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with reasonable ease by a programmer. The text of the assembly language is 

composed of letters, digits, spaces, newlines, and the characters slash (/) and 

dollar ($). Slash is used as a continuation symbol; it is skipped and the remaining 

characters of the line up to and including the next newline character are ignored. 

Its main purpose is to simplify the efficient use of cards as a medium for 

transferring INTCODE programs. Dollar marks the entry point of a procedure, 

with the sole purpose of helping the implementer to find his way around the 

compiled code. 

The assembly form of an instruction consists of the mnemonic letter for the 

machine function, optionally followed by I if indirection is specified, optionally 

followed by P or G if P or G modifications are specified, followed by the address 

which is either a signed integer or an assembly parameter of the form Ln, where n 

is an integer. Assembly parameters are used to label points in the program. A 

number not preceded by a letter is interpreted as a label and causes the specified 

assembly parameter to be set to the address of the next location to be loaded. 

The statement Dk will allocate a static storage location initialised to the signed 

integer k. The statement Dim will allocate a static storage location initialised with 

the value of the assembly parameter Ln. Characters may be packed and assembled 

by using character statements of the form Ck where k is the integer code of the 

character. The character size and number of characters per word are machine 

dependent and it is left to the assembler to pack character strings and pad them 

appropriately with zeros. 

It is possible to initialise global variables during assembly using a directive of the 

form GgLn. For example, G36L73 will cause global 36 of the INTCODE machine 

to be set to the value of assembly parameter number 73. 

Z is used to mark the end of each segment of code. Its effect is to unset all the 

assembly parameters. 

7.4.3 Example 

As an example, the following program (which was also used in the discussion of 

OCODE) 

GLOBAL $( START:1; WRITEF:76 $) 

LET START() BE 

$( LET F(N) = N=0 -> 1, N*F(N-1) 

FOR I = 1 TO 10 DO WRITEF( "F(^N) = £11*11", I, F(I)) 

$) 
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compiles into the following INTCODE: 

$ 1 JL5 

$ 3 L0 LIP2 X10 FL7 LI SP3 JL6 7 LIP2 LI X9 SP5 LIL4 K3 LIP2 

X5 SP3 6 LIP3 X4 

5 LI SP2 JL8 9 LL499 SP5 LIP2 SP6 LIP2 SP9 LIL4 K7 

SP7 LIG76 K3 LIP2 A1 SP2 

8 LIP2 L10 X15 TL9 X4 2 

4 DL3 499 Cll C70 C40 C37 C78 C41 C32 C61 C32 C37 C78 C10 

G1L1 

Z 

The effectiveness of INTCODE lies mainly in its simplicity making it easy to 

understand and implement; however, it is also compact and even with a simple 

non-optimising code generator the compiled code is smaller than straightforward 

machine code for most machines by a factor of nearly two to one. A typical 

INTCODE interpreter runs about ten times slower than compiled code on the 

same machine. 

7.4.4 The INTCODE assembler and interpreter 

To complete the description of INTCODE, we present the entire source of an 

INTCODE assembler and interpreter written in BCPL. This program assumes 

that string and character constants appearing in the INTCODE text use the 

ASCII code, but that it is to run on a 16-bit EBCDIC machine, hence the need for 

the ASCII and EBCDIC tables near the end. It has been tested on the IBM 370 (a 

32-bit EBCDIC machine). 

GET "LIBHBR" 

MANIFEST $( 

FSHIFT=13 

DBIT=#10000: PBIT=#4000; GBIT=#2000; IBIT=#1000 

ABITS=#777 

W0RDSIZE=16; BYTESIZE=8; LABMAX=500 

LIG1=#003001 

K2 =#140002 

X22 =#160026 

$) 

GLOBAL $( 

SYSPRINT:100; SOURCE:101; ETOA:102; ATOE:103 

G:110; P:111; CH:112; CYCLECOUNT:113 

LABV:120; CP:121; A:122; B:123; C:124; D:125; W:126 $) 
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LET ASSEMBLEO BE 

$(1 LET V = VEC LABMAX 

LET F = 0 

LABV := V 

CLEAR:FOR I = 0 TO LABMAX TO LABV!I := 0 

CP := 0 

NEXT: RCH() 

SW: SWITCHON CH INTO 

$(S DEFAULT: IF CH=ENDSTREAMCH RETURN 

WRITEF("*NBAD CH %C AT P = ^N*N", CH, P) 

GOTO NEXT 

CASE ' 0' : CASE ' 1' : CASE '2': CASE '3' -.CASE '4': 

CASE '5':CASE '61:CASE '7':CASE '8':CASE '9': 

SETLAB(RDN()) 

CP : = 0 

GOTO SW 

CASE '$':CASE '*S':CASE '*N': GOTO NEXT 

CASE 1L': F := 0; ENDCASE 

CASE 'S': F := 1; ENDCASE 

CASE 'A': F := 2; ENDCASE 

CASE 'J': F := 3; ENDCASE 

CASE ’T': F := 4; ENDCASE 

CASE ' F': F := 5; ENDCASE 

CASE 'K': F := 6; ENDCASE 

CASE 'X': F := 7; ENDCASE 

CASE 'C': RCH(); STC(HDN()); GOTO SW 

CASE 'D': RCH() 

TEST CH='L' 

THEN $( RCH() 

STW(0) 

LABREF(RDN(), P-1) $) 

ELSE STW(RDN()) 

GOTO SW 
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CASE ' G' : ECHO 

A := RDN() + G 

TEST CH='1' THEN HCH() 

ELSE WRITEF("*NBAD CODE AT P = %N*N", P) 

! A := 0 

LABREF(HDN(), A) 

GOTO SW 

CASE 'Z': FOR I = 0 TO LABMAX DO 

IF LABV!I>0 DO WRITEF("L?SN UNSET*N", I) 

GOTO CLEAR $)S 

W := F«FSHIFT 

RCH() 

IF CH=’I' DO $( W := W+IBIT; RCH( ) $) 
IF CH='P' DO $( w := W+PBIT; RCH( ) $) 
IF CH=1G1 DO $( w := 1+GBIT; RCH() $) 

TEST CH='L' 

THEN $( RCH() 

STW(W+DBIT) 

STW(0) 

LABREF(RDN(), P-1) $) 

ELSE $( LET A = RDN( ) 

TEST (A&ABITS)=A 

THEN STW(1+A) 

ELSE $( STW(W=DBIT); STW(A) $) $) 

GOTO SW $)1 

AND STW(W) BE $( !P := W 

P, CP := P+1, 0 $) 

AND STC(C) BE $( IF CP=0 DO $( STW(0); CP : = WORDSIZE $) 

CP := CP - BYTESIZE 

! (P-1) := ! (P-1) + (C«CP) $) 

AND RCH() BE $(1 CH := RDCH() 

UNLESS CH=1/' RETURN 

UNTIL CH=' *N' DO CH := RDCH() $)1 REPEAT 
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AND RDN() = VALOF 

$( LET A, B = 0, FALSE 

IF CH='-' DO $( B := TRUE; RCH() $) 

WHILE 101<=CH<='9' DO $( A := 10*A+CH-'0'; RCH() $) 

IF B DO A := -A 

RESULTIS A $) 

AND SETLAB(N) BE IF INRANGE(N) THEN 

$( LET K = LABV!N 

IF K<0 THEN 

WRITEF("L?SN ALREADY SET TO AT P = ?SN*N" ,N,-K,P) 

WHILE K>0 DO $( LET N = ! K 

!K := P 

K := N $) 

LABV!N := -P $) 

AND LABREF(N, A) BE IF INRANGE(N) THEN 

$( LET K = LABV!N 

TEST K<0 THEN K := -K OR LABV!N := A 

!A := !A + K $) 

AND INRANGE(N) = VALOF 

$( IF 0<=N<=LABMAX RESULTIS TRUE 

WRITEF( "LABEL L?SN OUT OF RANGE AT P = ?!N*N" , N, P) 

RESULTIS FALSE $) 

AND INTERPRET() = VALOF 

$(1 CYCLECOUNT := CYCLECOUNT + 1 

W := ! C 

C := C + 1 

TEST (W&DBIT)=0 

THEN D := W&ABITS 

ELSE $( D := !C; C := C+l $) 

IF (W & PBIT) NE 0 THEN D := D + P 

IF (W & GBIT) NE 0 THEN D := D + G 

IF (W & IBIT) NE 0 THEN D := !D 

SWITCHON W»FSHIFT INTO 
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$( ERROR: 

DEFAULT: SELECT0UTPUT(SYSPRINT) 

WRITEF("*NINTC0DE ERROR AT C 

RESULTIS -1 

CASE 0: B : = A; A := D; LOOP 

CASE 1: !D := A; LOOP 

CASE 2: A = A + D 9 LOOP 

CASE 3: C = D; LOOP 

CASE 4: IF A THEN C : = D; LOOP 

CASE 5: UNLESS A DO C := D; LOOP 

CASE 6: D : = P + D 

D!0 , D!1 : = P, c 
P, C := D, A 

LOOP 

CASE 7: SWITCHON D INTO 

$( DEFAULT: GOTO ERROR 

CASE 1 A : = • A; LOOP 

CASE 2 A : = -A: LOOP 

CASE 3 A : = NOT A; LOOP 

CASE 4 C : = P’l 

P : = P!0 

LOOP 

CASE 5 A : = B * A; LOOP 

CASE 6 A : = B / A; LOOP 

CASE 7 A : = B REM A; LOOP 

CASE 8 A : = B + A; LOOP 

CASE 9 A : = B - A; LOOP 

CASE 10: A := B = A; LOOP 

CASE 11: A := B NE A; LOOP 

CASE 12: A := B < A; LOOP 

CASE 13: A := B >= A; LOOP 

CASE 14: A := B > A; LOOP 

CASE 15: A := B <= A; LOOP 

CASE 16: A := B « A; LOOP 

CASE 17: A := B » A; LOOP 

CASE 18: A := BAA; LOOP 

CASE 19: A := B | A; LOOP 

CASE 20: A := B NEQV A; LOOP 

CASE 21: A := B EQV A; LOOP 

= ?SN*N" , C-l) 
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CASE 22: RESULTIS 0 // FINISH 

CASE 23: B, D := C!0, C! 1 // SWITCHON 

UNTIL B=0 DO 

$( B, C : = B-l, C+2 

IF A=C!0 DO 

$( D := C!1 

BREAK $) $) 

C := D 

LOOP 

// cases 24 upwards are only called from the following 

// hand-written INTCODE LIBRARY - ICLIB: 

// 11 LIP2 X24 X4 G11L11 /SELECTINPUT 

// 12 LIP2 X25 X4 G12L12 /SELECTOUTPUT 

// 13 X26 X4 G13L13 /RDCH 

// 14 LIP2 X27 X4 G14L14 /WRCH 

// 42 LIP2 X28 X4 G42L42 /FINDINPUT 

// 41 LIP2 X29 X4 G41L41 /FINDOUTPUT 

// 30 LIP2 X30 X4 G30L30 /STOP 

// 31 X31 X4 G31L31 /LEVEL 

// 32 LIP3 LIP2 X32 G32L32 /LONGJUMP 

// 46 X33 X4 G46L46 /ENDREAD 

// 47 X34 X4 G47L47 /ENDWRITE 

// 40 LIP3 LIP2 X35 G40L40 /APTOVEC 

// 85 LIP3 LIP2 X36 X4' G85L85 / GETBYTE 

// 86 LIP3 LIP2 X37 X4 G86L86 / PUTBYTE 

// Z 

CASE 24: 

CASE 25: 

CASE 26: 

CASE 27: 

CASE 28: 

CASE 29: 

CASE 30: 

CASE 31: 

CASE 32: 

CASE 33: 

CASE 34: 

SELECTINPUT(A); LOOP 

SELECTOUTPUT(A); LOOP 

A := ETOA!RDCH(); LOOP 

WRCH(ATOE!A); LOOP 

A := FINDINPUT(STRING370(A)); LOOP 

A := FINDOUTPUT(STRING370(A)); LOOP 

RESULTIS A // STOP(A) 

A := P'0; LOOP // used in LEVEL() 

P, C := A, B // used in LONGJUMP(P.L) 

LOOP 

ENDREAD(); LOOP 

ENDWRITE(); LOOP 
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CASE 35: D := P+B+l // used in APTOVEC(F, N) 

D!0, Dll, D!2, D!3 := P!0, P!l, P, B 

P, C := D, A 

LOOP 

CASE 36: A := ICGETBYTE(A, B) // GETBYTE(S, I) 

LOOP 

CASE 37: ICPUTBYTE(A, B, P!4) // PUTBYTE(S, I, CH) 

LOOP 

$) $) $)1 REPEAT 

AND STRING370(S) = VALOF 

$( LET T = TABLE 0, 0, 0, 0,0,0,0,0 

PUTBYTE(T, 0, ICGETBYTE(S, 0)) 

FOR I = 1 TO ICGETBYTE(S,0) DO 

POTBYTE(T,I,ATOE!ICGETBYTE(S,I)) 

RESULTIS T $) 

AND ICGETBYTE(S, I) = VALOF 

$( LET W = S1(1/2) 

IF (I&1)=0 DO W := W»8 

RESULTIS W&255 $) 

AND ICPUTBYTE(S, I, CH) BE 

$( LET P = SS!(1/2) 

LET W = !P 

TEST (I&1)=0 THEN !P := W&#X00FF | CH«8 

ELSE ! P := W&.#XFF00 | CH $) 

LET START(PARM) BE 

$(1 

LET PROGVEC = VEC 20000 

LET GLOBYEC = VEC 400 

G, P := GLOBVEC, PROGVEC 

SYSPRINT := FINDOUTPUT("SYSPRINT") 

SELECTOUTPUT(SYSPRINT) 

WRITES("INTCODE SYSTEM ENTERED*N") 
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SOURCE := FINDINPUTC"INTIN") 

SELECTINPUT(SOURCE) 

ASSEMBLEO 

SOURCE := FINDINPUTC"SYSIN") 

UNLESS SOURCE=0 DO SELECTINPUT(SOURCE) 

WRITEF("*NPR0GRAM SIZE = JSN*N" , P-PROGVEC) 

ATOE := 1+TABLE -1, // assuming ENDSTREAMCH=-1 

0, 0, 0, 0, 0, 0, 0, 0, // ASCII to EBCDIC 

0, 5, 21, 0, 12, 0, 0 . 0, // ' *T' ' *N » ' * P' 

0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 

64, 90, 127, 123, 91, 108, 80, 125, // ' *S' i II # $ % & 1 

77, 93, 92, 78, 107, 96, 75, 97, // ( ) * + y - . / 
240, 241, 242, 243, 244, 245, 246, 247, // 0 1 2 3 4 5 6 7 

248, 249, 122, 94, 76, 126, 110, 111. // 8 9 : ; < = > ? 

124, 193, 194, 195, 196, 197, 198, 199, // a A B C D E F G 

200, 201, 209, 210, 211, 212, 213, 214, // H I J K L M N 0 

215, 216, 217, 226, 227, 228, 229, 230, // P Q R S T U V W 

231, 232, 233, 66, 98, 67, 101, 102, // X Y Z [ \ 1 t <- 

64, 129, 130, 131, 132, 133, 134, 135, // a 5 c d e f g 
136, 137, 145, 146, 147, 148, 149, 150, // h i j k 1 m n O 

151, 152, 153, 162, 163, 164, 165, 166, // P q r s t u V w 

167, 168, 169, 64, 79, 64, 95, 255 // X y X 1 “1 

ETOA := 1+TABLE -1, // assuming ENDSTREAMCH=-1 

0, 0, 0, 0, 0. #11, 0, 0, 
0, 0, 0, #13, #14, #15, 0, 0, 
0, 0, 0, 0, 0. #12, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, #12, 0, 0, 
0, 0, 0, 0, 0, 0. 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0. 0, 0, 

#40, 0, #133, #135, 0, 0, 0, 0, 
0, 0, 0, #56, #74, #50, #53, #174, 

#46, 0, 0, 0, 0, 0. 0, 0, 

0, 0, #41, #44, #52, #51, #73, #176, 
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#55, #57, #134, 0, 0, #136, #137, 0, 

0, 0, 0, #54, #45, #140, #76, #77, 

0. 0. 0, 0, 0, 0, 0, 0, 
0, 0, #72, #43, #100, #47, #75, #42, 

0, #141, #142, #143, #144, #145, #146, #147, 

#150, #151, 0, 0, 0, 0, 0, 0, 

0, #152, #153, #154, #155, #156, #157, #160, 

#161, #162, 0, 0, 0, 0, 0, 0, 

0, 0, #163, #164, #165, #166, #167, #170, 

#171, #172, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 
0, #101, #102, #103, #104, #105, #106, #107, 

#110, #111, 0, 0, 0, 0, 0, 0, 
0, #112, #113, #114, #115, #116, #117, #120, 

#121, #122, 0, 0, 0, 0, 0, 0, 
0, 0, #123, #124, #125, #126, #127, #130, 

#131, #132, 0, 0, 0, 0, 0, 0, 
#60, #61, #62, #63, #64, #65, #66, #67, 
#70, #71, 0, 0, 0, 0, 0, 0 

C := TABLE LIG1, K2, X22 

CYCLECOUNT := 0 

A := INTERPRET() 

SELECTOUTPUT(SYSPRINT) 

WRITEF("*N*NEXECUTION 
ntmT nnArTiTm a \ 

CYCLES = ?SN, CODE = £N*N 

CYCLECOUNT, A) 

IF A<0 DO MAPSTOREO 

FINISH $)1 
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Language definition 

8.1 Program 

At the outermost level, a BCPL program is a sequence of declarations. 

8.2 Elements 

<element> ::= <identifier> | <number> | 

<string constant> | <character constant> | 

TRUE | FALSE 

An <identifier> consists of a sequence of letters, digits and dots, the first 

character of which must be a letter. 

A <number> is either an integer consisting of a sequence of decimal digits, or an 

octal constant consisting of the character # followed by octal digits, or a hexadeci¬ 

mal constant consisting of #X followed by hexadecimal digits. The reserved words 

TRUE and FALSE are used to represent the two truth values. 

A <string constant> consists of up to 255 characters enclosed in string quotes 

("). Within a string, the character " may be represented only by the pair * " and 

the character * can only be represented by the pair * *. 

Other characters may be represented as follows: 

*N 

*T 

* S 

*B 

*p 

is newline 

is horizontal tab 

is space 

is backspace 

is newpage 

The internal representation of a string is the address of the region of store 

into which the length and characters of the string are packed. 

A ccharacter constant> consists of a single character enclosed in character 

quotes ('). The character ' can be represented in a character constant only by the 

pair * '. Other escape conventions are the same as for a string constant. A 

character constant is right justified in a word. 

145 
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8.3 Expressions 

All forms of expressions are listed below. El, E2 and E3 represent arbitrary 

expressions except as noted in the descriptions which follow the list, and K0, K1 

and K2 represent constant expressions (whose values can be determined at 

compile-time, see section 8.3.8). C represents a command. 

Primary < element > 
(El) 

Function call El() 
El(E2, E3, . . .) 

Addressing E11E2 subscripting 
3E1 address generation 
!E1 indirection 

Arithmetic El * E2 
El / E2 
El HEM E2 
El + E2 
+ El 
El - E2 
- El 

integer remainder 

Relational El = E2 
El ->=E2 
El < E2 
El <= E2 
El > E2 
El >= E2 

not equal 

Shift El « E2 left shift by E2 bits 
El » E2 right shift by E2 bits 

Logical -i El not (complement) El 
El & E2 and 
El | E2 inclusive or 
El EQV E2 bitwise equivalence 
El NEQV E2 bitwise not-equivalence 

(exclusive or) 
Conditional El -> E2, E3 
Table TABLE K0.K1.K2, . . . 
Valof VALOF C see section 8.5.5. 

The relative binding power of the operators is as follows: 

(Highest, most binding) Function call (see section 8.6.6) 

! (subscripting) 

a ! 

* / HEM 
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+ - 

Relational 

Shifts (see section 8.3.4) 

~1 

& 
I 
EQV NEQV 

-> 

TABLE 

(Lowest, least binding) VALOF 

In order that the rule allowing the omission of most semicolons should work 

properly, a dyadic operator may not be the first symbol on a line. 

8.3.1 Addressing operators 

If the value X is the address of a word in storage, then X+1 is the address of the next 

word. 

If V is a variable, then associated with V is a single word of memory, which is 

called a cell. The contents of the cell is called the value of V and the address of the 

cell is called the address of V. An address may be used by applying the indirection 

operator (!). The expression 

! El 

has, as value, the contents of the cell whose address is the value of the expression 

El. 

An address may be generated by means of the operator a. The expression 

aEl 

is only valid if El is one of the following: 

1. an identifier (not declared by a manifest declaration), in which case a V is the 

address of V, 

2. a subscripted expression, in which case the value of aEl! E2 is E1+E2, or 

3. an indirection expression, in which case the value of a !El is El. 

The interpretation of 

! El 

depends on context as follows: 

1. if it appears as the left hand side of an assignment statement 

!E1:= E2 
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El is evaluated to produce the address of a cell and E2 is stored in it, 

2. a ( ! El) = El as noted above, or 

3. in any other context El is evaluated and the contents of that value, treated as 

an address, is taken. 

Thus, 1 forces one more contents-taking than is normally demanded by the 

context. 

8.3.2 Arithmetic operators 

The operators * and / denote integer multiplication and division. The operator 

HEM yields the integer remainder after dividing the left-hand operand by the right 

hand one if both operands are positive, it is otherwise implementation dependent. 

The operators + and - may be used in either a monadic or dyadic context and 

perform the appropriate integer arithmetic operations. The treatment of arith¬ 

metic overflow is undefined. 

8.3.3 Relations 

A relational operator compares the integer values of its two operands and yields a 

truth-value (TRUE or FALSE) as result. The operators are as follows: 

= equal 

-i= not equal 

< less than 

<= less than or equal 

> greater than 

>= greater than or equal 

The operators = and ~i= make bitwise comparisons of their operands and so may 

be used to determine the equality of values regardless of the kind of objects they 

represent. 

An extended relational expression such as 

1 A'<=CH<='Z' 

is equivalent to 

'A'<=CH A CH<='Z 
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8.3.4 Shift operators 

In the expression E1«E2 (or E1»E2), E2 must evaluate to yield a non-negative 

integer. The value is El, taken as a bit-pattern, shifted left (or right) by E2 places. 

Vacated positions are filled with zeroes. 

Syntactically, the shift operators have lower precedence on the left than 

relational operators but greater precedence on the right. Thus, for example, 

A » 5 = 14 is equivalent to (A»5) = 14 

whereas 

14 = A » 5 is equivalent to (14=A) » 5 

8.3.5 Logical operators 

The effect of a logical operator depends on context. There are two logical 

contexts: ‘truth-value’ and ‘bit’. The truth-value context exists whenever the result 

of the expression will be interpreted immediately as true or false. In this case each 

sub-expression is interpreted, from left to right, in truth-value context until the 

truth or falsehood of the expression is determined. Then evaluation stops. 

If an expression in a truth-value context yields neither true nor false the effect is 

undefined. 

In a ‘bit’ context, the operator -i causes bit-by-bit complementation of its 

operand. The other operators combine their operands bit-by-bit according to the 

following table: 

Operands & 1 NEQV EQV 

0 0 0 0 0 1 
0 1 0 1 1 0 
1 0 0 1 1 0 
1 1 1 1 0 1 

8.3.6 The conditional operator 

The expression 

El -> E2, E3 

is evaluated by evaluating El in truth-value context. If it yields true, then the 

expression has value E2, otherwise E3.E2 and E3 are never both evaluated. 
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8.3.7 Table 

The value of the table expression 

TABLE K0, Kl, K2, ... 

is the address of a static vector of cells initialised to the values of K0, Kl, K2, ... 

which must be constant-expressions. 

8.3.8 Constant-expressions 

A constant-expression is any expression involving only numbers, character 

constants, names declared by manifest declarations, TRUE, FALSE and the opera¬ 

tors *, /, REM, +, -, «, », & and | . 

8.4 Section brackets 

Blocks, compound commands and some other syntactic constructions use the 

symbols $( and $) which are called opening and closing section brackets. A 

section bracket may be tagged with a sequence of letters, digits and dots (the same 

characters as are used in identifiers). 

An opening section bracket can be matched only by an identically tagged closing 

bracket. When the compiler finds a closing section bracket with a non-null tag, if 

the nearest opening bracket (smallest currently open section) does not match, that 

section is closed and the process repeats until a matching opening section bracket 

is found. Thus is it impossible to write sections which are overlapping (not nested). 

8.5 Commands 

All forms of commands are listed below. E, El, E2, E3, FI, F2 denote expressions, 

K a constant-expression, C, Cl and C2 commands, and D1 and D2 declarations. 

Routine call E(E1,E2, ...) 

E() 

Assignment El, E2, . . . :=F1, F2, . . . 

Conditional IF E THEN C 

UNLESS E DO C 

TEST E THEN Cl ELSE C2 
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Repetitive 

Resultis 

Switchon 

T ransfer 

Compound 

Block 

WHILE E DO C 

UNTIL E DO C 

C REPEAT 

C REPEATWHILE E 

C REPEATUNTIL E 

FOR N = El TO E2 BY K DO C 

FOR N = El TO E2 DO C 

RESULTIS E 

SWITCHON E INTO <compound command> 

GOTO E 

FINISH 

RETURN 

BREAK 

LOOP 

ENDCASE 

$( Cl; 02; ... $) 

$( Dl; D2; .. .; Cl; C2; . . . $) 

Discussion of the routine call is deferred until section 8.6.6 where function and 

routine declarations are described. 

8.5.1 Assignment 

The command 

El := FI 

causes the value of FI to be stored in the cell specified by El. El must have one of 

the following forms: 

(1) the identifier of a variable <identifier> 

(2) a subscripted expression E2 \ E3 

(3) an indirection expression ! E2 

In case (1), the cell belonging to the identifier is updated. Cases (2) and (3) have 

been described in section 8.3.1. 

A list of assignments may be written thus: 

El, E2, .... En := FI, F2, .... Fn 
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where Ei and Fi are expressions. This is equivalent to 

El := FI 

E2 := F2 

En := Fn 

8.5.2 Conditional commands 

IF E THEN Cl 

UNLESS E DO C2 

TEST E THEN Cl ELSE C2 

Expression E is evaluated in truth-value context. Command Cl is executed if E is 

true, otherwise the command C2 is executed. 

8.5.3 The for-command 

FOE N = El TO E2 BY K DO C 

FOE N = .E1 TO E2 DO C 

N must be an identifier and K must be a constant expression. This command will 

be described by showing an equivalent block. 

$( LET N, T = El, E2 

UNTIL N>T DO $( C 

N := N + K $) 

$) 

If the value of K is negative the relation N>T is replaced by N<T. The declaration 

LET N, T = El, E2 

declares two new cells with identifiers N and T, T being a new identifier that does 

not occur in C. Note that the control variable N is not available outside the scope of 

the command. 

The command 

FOE N = El TO E2 DO C 
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is equivalent to 

FOR N = El TO E2 BY 1 DO C 

8.5.4 Other repetitive commands 

WHILE E DO C 

UNTIL E DO C 

C REPEAT 

C REPEATWHILE E 

C REPEATUNTIL E 

Command C is executed repeatedly until condition E becomes true or false as 

implied by the command. If the condition precedes the command (WHILE, 

UNTIL) the test will be made before each execution of C. If it follows the command 

(REPEATWHILE, REPEATUNTIL), the test will be made after each execution of C. 

In the case of 

C REPEAT 

there is no condition and termination must be by a transfer or resultis-command 

in C. C will usually be a compound command or block. 

Within REPEAT, REPEATWHILE and REPEATUNTIL, C is taken as short as 

possible. Thus, for example 

IF E THEN C REPEAT 

is the same as 

IF E THEN $( C REPEAT $) 

and 

E := VALOF C REPEAT 

is the same as 

E := VALOF $( C REPEAT $) 
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8.5.5 Resultis-command and valof -expression 

The expression 

VALOF C 

where C is a command (usually a compound command or block) is evaluated by 

executing the declarations and commands in C until a command of the form: 

RESULTIS E 

is encountered. The expression E is evaluated, its value becomes the value of the 

valof-expression (which must be in the current procedure body) and execution of 

the commands within C ceases. A valof-expression must contain one or more 

resultis-commands and one must be executed. In the case of nested valof- 

expressions, the resultis-command terminates only the innermost valof-expres¬ 

sion containing it. 

8.5.6 Switchon-command 

SWITCHON E INTO <compound command> 

where the compound command contains labels of the form 

CASE K: 

or 

DEFAULT: 

The expression E is first evaluated and, if a case exists which has a constant with the 

same value, then execution is resumed at that label; otherwise, if there is a default 

label, then execution is continued from there, and if there is not then execution is 

resumed from just after the end of the switchon-command. 

8.5.7 Transfer of control 

GOTO E 

FINISH 

RETURN 

BREAK 

LOOP 

ENDCASE 
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The command GOTO E interprets the value of E as the address of a point in the 

program (which must be in the current procedure body), and transfers control to 

that point. The command FINISH causes an implementation-dependent 

termination of the entire program. RETURN causes control to return to the caller 

of a routine. BREAK causes execution to be resumed at the point just after the 

smallest textually enclosing repetitive command. The repetitive commands are 

those with the following key words: 

UNTIL,WHILE, REPEAT, REPEATWHILE, REPEATUNTIL, FOR. 

LOOP causes execution to be resumed at the point just before the end of the 

body of a repetitive command. For a for-command it is the point where the control 

variable is incremented, and for the other repetitive commands it is where the 

condition (if any) is tested. ENDCASE causes execution to be resumed at the point 

just after the smallest textually enclosing switchon-command. 

8.5.8 Compound command 

A compound command is a sequence of commands enclosed in section brackets. 

$( Cl; C2; ... $) 

the commands Cl, C2, .. . are executed in sequence. 

8.5.9 Block 

A block is a sequence of declarations followed by a sequence of commands 

enclosed together in section brackets. 

$( Dl; D2; ... ; Cl; C2; ... $) 

The declarations Dl, D2, . . . and the commands Cl, C2, . . . are executed in 

sequence. The scope of an identifier (i.e. the region of program where the 

identifier is known) declared in a declaration is the declaration itself (to allow 

recursive definition), the subsequent declarations and the commands of the block. 

Notice that the scope does not include earlier declarations or extend outside the 

block. 

8.6 Declarations 

Every identifier used in a program must be declared explicitly. All forms of 

declaration are shown below, where N, Nl, N2 are names, K, Kl, K2 are constant 
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expressions, and E, El, E2 are expressions. 

Global 

Manifest 

Static 

Dynamic 

Vector 

Function 

Routine 

Formal parameter 

Label 

For-loop 

GLOBAL $( N1:K1; N2:K2; ...$) 

MANIFEST $( N1=K1; N2=K2; . . . $) 

STATIC $( N1=K1; N2=K2; . . . $) 

LET Nl, N2, . . . = El, E2, ... 

LET N = VEC K 

LET N(N1, N2, ... ) = E 

LET N(N1, N2, ... ) BE C 

(these occur as part of function and routine 

declarations) 

N: 

FOB N = El TO E2 BY K TO C 

The declaration of formal parameters is covered in sections 8.6.6 and 8.6.7, and 

the for-loop is described in section 8.5.3. The scope of identifiers declared at the 

head of a block is described in the previous section. 

8.6.1 Global 

A BCPL program need not be compiled in one piece. The sole means of 

communication between separately compiled segments of program is the global 

vector. The declaration 

GLOBAL $( N1:K1 $) 

associates the identifier Nl with the location K1 in the global vector. This name 

identifies a static cell which may be accessed by name or by any other identifier 

associated with the same global vector location. 

Global declarations may be Combined. The declaration 

GLOBAL $( Nl:K1; N2:K2; ...; Nn:Kn $) 

is equivalent to 

GLOBAL $( N1:K1 $) 

GLOBAL $( N2:K2 $) 

GLOBAL $( Nn:Kn $) 
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8.6.2 Manifest 

An identifier may be associated with a constant by the declaration 

MANIFEST $( N1=K1 $) 

An identifier declared by a manifest declaration may only be used in contexts 

where a constant would be allowable. It may not, for instance, appear on the 

left-hand side of an assignment. Like global declarations, manifest declarations 

may be combined. The declaration 

MANIFEST $( N1=K1; N2=K2; Nn=Kn $) 

is equivalent to 

MANIFEST $( N1=K1 $) 

MANIFEST $( N2=K2 $) 

MANIFEST $( Nn=Kn $) 

8.6.3 Static 

A variable may be declared and given an initial value by the declaration 

STATIC $( N1=K1 $) 

The variable N1 has a cell permanently allocated to it throughout the execution 

of the program (even when control is not dynamically within the scope of the 

declaration). Like global declarations, static declarations may be combined. The 

declaration 

STATIC $( N1=K1; N2=K2; Nn=Kn $) 

is equivalent to 

STATIC $( N1=K1 $) 

STATIC $( N2=K2 $) 

STATIC $( Nn=Kn $) 
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8.6.4 Dynamic 

The declaration 

LET NT, N2, .... Nn = El, E2, .... En 

creates dynamic cells and associates with them the identifiers N1, N2, . . . , Nn. 

These cells are initialised to the values of El, E2, . . . , En. The space reserved 

for these cells is released on leaving the block in which the declaration appears. 

The order of initialisation of N1_Nn is not defined. 

8.6.5 Vector 

The declaration 

LET N = VEC K 

where K is a constant-expression, creates a dynamic vector by reserving K+l cells 

of contiguous storage in memory, plus one cell which is associated with the 

identifier N. Execution of the declaration causes the value of N to become the 

address of the K+l cells. The storage allocated is released on leaving the block. 

8.6.6 Procedure 

The declaration 

LET N(N1, N2, ..., Nm) = E 

declares a function named N with in parameters. The parentheses are required 

even if m — 0. A parameter name has the same syntax as an identifier, and its scope 

is the expression E. A routine declaration is similar to a function declaration except 

that its body is a command: 

LET N(N1, N2, ..., Nm) BE C 

If the declaration is within the scope of a global declaration for N, then the global 

cell will be initialised to the entry address of the procedure before execution of the 

program. Otherwise, a static cell is created, associated with the identifier N and 

initialised to the entry address. 
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The procedure is invoked by the call 

E(E1, E2, ... ) 

where expression E evaluates to the entry address. In particular, within the scope 

of the identifier N, the procedure may be invoked by the call 

N(E1, E2, ... ) 

provided the value of N has not been changed during the execution of the 

program. 

Each value passed as a parameter is copied into a newly created cell which is then 

associated with the corresponding parameter name. The cells are consecutive in 

store and so the argument list behaves like an initialised dynamic vector. The 

space allocated for the argument list is released when evaluation of the call is 

complete. The arguments are always passed by value; however, the value passed 

may, of course, be an address. The number of parameters passed in a call of a 

procedure need not equal the number of formal parameters in the procedure 

declaration. Implications of this are discussed in section 4.2.3. A function call is a 

call in the context of an expression. If a function is being called, the result is the 

value of E, and if a routine is being called, the result is undefined. A routine call is a 

call in the context of a command and may be used to call either a function or a 

routine. A routine call has no result. No dynamic (or vector or formal) variable 

that is declared outside a procedure may be directly referred to from within its 

body. 

8.6.7 Label 

A label may be declared by 

N: 

A label declaration may precede any command or label declaration, but may not 

precede any other form of declaration. Exactly as in the case of a procedure 

declaration, a label declaration creates a static cell if it is not within the scope of a 

global declaration of the same identifier. The static or global cell is initialised 

before execution with the address of the point in the program labelled, so that the 

command 

GOTO N 

has the expected effect. 
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The scope of a label depends on its context. It is the smallest of the following 

regions of program: 

(1) the command sequence of the smallest textually enclosing block, 

(2) the body of the smallest textually enclosing valof-expression or procedure, 

(3) the body of the smallest textually enclosing for-command. 

Using a goto-command to transfer to a label which is outside the current 

procedure will produce undefined results. 

8.6.8 Simultaneous declaration 

Any declaration of the form 

LET ... 

may be followed by one or more declarations of the form 

AND ... 

where any construct which may follow LET may follow AND. As far as scope is 

concerned, such a collection of declarations is treated like a single declaration. 

This makes it possible, for example, for two procedures to know each other 

without recourse to the global vector. The order of declaration of items connected 

by AND is not defined. 

8.7 Miscellaneous features 

8.7.1 Get-directives 

It is possible to include a file in the source text of a program using a get-directive of 

the form: 

GET "string" 

where string is an implementation-dependent file specifier. A get-directive 

should appear on a line by itself. 

8.7.2 Comments and spaces 

The character pair // denotes the beginning of a comment. All characters from 

(and including) // up to but not including the newline character will be ignored by 
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the compiler. Blank lines are also ignored. Space and tab characters may be 

inserted freely except inside an element, a reserved word (e.g. VALOF), or an 

operator (e.g. : =). Space or tab characters are required to separate identifiers or 

system words from adjoining identifiers or system words. 

8.7.3 Optional symbols and synonyms 

The reserved words DO and THEN are synonyms in BCPL, as are OH and ELSE. 

Most implementations of BCPL also allow other synonyms. 

In order to make BCPL programs easier to read and to write, the compiler 

allows the syntax rules to be relaxed in certain cases. The word DO (or THEN) may 

be omitted whenever it is immediately followed by the keyword of a command 

(e.g. EESULTIS). Any semicolon occurring as the last symbol of a line may be 

omitted. 

8.8 The formal syntax of BCPL 

This section presents the Backus Naur form (BNF) of the syntax of BCPL. The 

whole syntax is given, with the following exceptions: 

1. Comments are not included, and the space character is not represented even 

where required. 

2. The section-bracket tagging rule is not included, since it is impossible to 

represent in BNF. 

3. The graphic escape sequences allowable in string and character constants are 

not represented. 

4. No account is made of the rules which allow dropping of semicolon and DO in 

most cases. These rules unnecessarily complicate the BNF syntax yet are easy 

to understand by other means. 

5. BCPL has several synonymous system words and operators: for example, DO 

and THEN. Only a standard form of these Symbols is shown in the syntax. 

6. Certain constructions can be used only ift .specific contexts. Not all these 
i v 

restrictions are included: for example, CA£-E and DEFAULT can only be used 

in switches, and EESULTIS only in expressions. Finally, there is the necessity 

of declaring all identifiers that are used in a program. 

7. There is a syntactic ambiguity relating to <repeated command> which is 

resolved in section 8.5.4 

The brackets [ ] imply arbitrary repetition of the categories enclosed. 
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8.8.1 Identifiers, strings, numbers 

<letter> :: = A|b|C|D|E|p|G|h|I|J|k|L| m| k 01 P | Q | R | 

s|t|u)v|w|x|y|z 

<octal digit> :: = 0il|2i3j4|5[6|7 

<hexdigit> :: = 0|li2|3i4|5|6i7|8|9|A|Bi C|D E | F 

<digit> :: = 0|l|2|3|4|5|6l7|8|9 

<string constant> :: = "<255 or fewer characters>" 

ccharacter constant> :: = 1 <one character>' 

<octal number> :: = # <octal digit> [ <octal digit> ] 

<hex number> :: = #X <hex digit> [<hex digit>] 

<number> :: = <octal number> 1 <hex number> | <digit> [<digit>] 

<identifier> :: = <letter> [ <letter> | <digit> | . ] 

8.8.2 Operators 

<address op> : := a | ! 

<mult op> : := *|/| REM 

odd op> : := + 1 - 

<rel op> : 

A
 

V
 

II A
 

II V
 

II r II II 

<shift op> : : = « | » 

<and op> : := & 

<or op> : := 1 

<eqv op> : : = EQV 1 NEQV 

<not op> : : = -i 

8.8.3 Expressions 

<element> : : = <character constant> | <string constant> | 

<number> | <identifier> | TRUE FALSE 

< primary E> : := <primary E> (<expression list>) | 

< primary E> ( ) | (<expression>) <element> 

<vector E> : = < vector E> ! < primary E> | < primary E> 

oddress E> : = oddress op> <address E> | <vector E> 

<mult E> : = <mult E> <mult op> <address E> | <address E> 

<add E> : = odd E> odd op> <mult E> | odd op> <mult E> 

<mult E> 

<rel E> : : = <add E> [ <rel op> <add E> ] 

<shift E> : : = <shift E> <shift op> odd E> | <rel E> 

<not E> : = <not opxshift E> | <shift E> 

<and E> : : = <not E> [ ond op> <not E> ] 
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<or E> 

<eqv E> 

<conditional E> 

<expression> 

:: = <and E> [ <or op> <and E> ] 

:: = <or E> [ <eqv op> <or E> ] 

::= <eqv E> -> <conditional E> , conditional'E> | 

<eqv E> 

:: = conditional E> | 

TABLE <constant expression> 

[, <constant expression>] | 

VALOF <command> 

8.8.4 Constant-expressions 

<c element> 

<c mult E> 

<c add E> 

<c shift E> 

<c and E> 

<constant expression> 

<characterconstant> | <number> | <identifier> | 

TRUE | FALSE | (<constant expression>) 

<cmultE><multop><celement> | <celement> 

<c add E> <add op> <c mult E> | 

<add op> <c mult E> | <c mult E> 

<c shift E> <shift op> <c add E> | <c add E> 

<c and E> <and op> <c shift E> | <c shift E> 

<constant expression> <or op> <c and E> | 

<c and E> 

8.8.5 Lists of expressions and identifiers 

expression list> :: = <expression> [ , <expression> ] 

<name list> :: = <name> [ , <name> ] 

8.8.6 Declarations 

<manifest item> :: = 

< manifest list> :: = 

<manifest declaration> :: = 

<static declaration :: = 

<global item = 

<global list> :: = 

<global declaration> :: = 

<simple definition> :: = 

<vector definition> :: = 

<function dehnition> :: = 

<routine definition> :: = 

<identifier> = constant expression> 

<manifest item> [ ; <manifest item> ] 

MANIFEST $( <manifest list> $) 

STATIC $( <manifest list> $) 

<identifier> : constant expression> 

< global item> [ ; < global item ] 

GLOBAL $( <global list> $) 

<name list> = <expression list> 

<identifier> = VEC <constant expression> 

<identifier> (<namelist>) = <expression> | 

<identifier> ( ) = <expression> 

<identifier> (<namelist>) BE <command> | 

<identifier> ( ) BE <command> 
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<definition> 

simultaneous 

declaration> 

<declaration> 

::= <simple definition> | <vector definition> | 

<function definition> | <routine definition> 

:: = LET <definition> [ AND <definition> ] 

::= simultaneous declaration> | 

<manifest declaration> | <static declaration> | 

<global declaration> 

8.8.7 Left-hand side expressions 

<lhse> ::= <identifier> | <vector E> ! <primary E> | 

! <primary E> 

<left hand side list> :: = <lhse> [ , <lhse> ] 

8.8.8 Unlabelled commands 

<assignment> = 

<simple command> :: = 

<goto command> :: = 

croudne command> :: = 

<resulds command> :: = 

Switchon command> :: = 

<repeatable command?:: = 

<repeated command? :: = 

<until command? 

<while command? 

<for command? 

<repetitive command? :: = 

cleft hand side list> : = cexpression list> 

BREAK | LOOP | ENDCASE | RETURN | FINISH 

GOTO <expression> 

cprimary E> (cexpression list>) | cprimary E> ( ) 

RESULTIS <expression> 

SWITCHON <expression> INTO 

ccompound command? 

<assignment> | csimple command? | 

cgoto command? | croutine command? | 

cresultis command? | crepeated command? | 

cswitchon command? | ccompound command? | 

cblock> 

crepeatable command? REPEAT | 

crepeatable command? REPEATUNTIL 

<expression> | crepeatable command? 

REPEATWHILE cexpression> 

UNTIL cexpression> DO ccommand? 

WHILE <expression> DO <command> 

FOR cidendfier> = cexpression> TO <expression> 

BY cconstant expression> DO ccommand? | 

FOH cidendfier> = cexpression> TO 

<expression> DO ccommand? 

crepeated command? | cuntil command? | 

cwhile command? | cfor command? 
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<test command> :: = 

<if command> :: = 

<unless command> :: = 

<unlabelled command>:: = 

TEST <expression> THEN <command> ELSE 

<command> 

IP <expression> THEN <command> 

UNLESS <expression> THEN <command> 

<repeatable command> | repetitive command> 

<test command> | <if command> | 

8.8.9 Labelled commands 

<label prefix> 

<case prefix> 

<default prefix> 

<prefix> 

<command> 

= <identifier> : 

= CASE <constant expression> : 

= DEFAULT : 

= <label prefix> | <case prefix> | <default prefix> 

= <unlabelled command> | 

<prefix> <command> | 

<prefix> 

8.8.10 Blocks and compound commands 

<command list> :: = 

declaration part> :: = 

<block> :: = 

<compound command>:: = 

<program> :: = 

<command> [ ; <command> ] 

<declaration> [ ; <declaration> ] 

$ ( <declaration part> ; <command list> $) 

$( <command list> $) 

< declaration part> 
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* 10, 17, 145, 146, 148 a 30, 36, 146, 147 

9, 145 13, 40, 146, 147 
** 10, 145 -»= 13, 146, 148 

*B 9, 145 i 13, 40, 146, 147 

*P 9, 145 

A 

ABORT 63, 78 
abstract object 1 
actual parameter 21, 35, 159 
address generation expressions 30, 146 
addressing operators 30, 147 
AE tree 79, 98 
Algol 60 3, 7, 8, 74, 76, 77 
analysis of commands 118 
analysis of definitions 116 
analysis of expressions 110 
AUD 22, 75, 160 
applicative expression tree 79, 98 
APTOVEC 54 
arithmetic 17, 148 
arithmetic expressions 9, 17, 146 
arithmetic operators 17, 148 
ASCII 9 

assembler and interpreter for 
INTCODE 136 

assignment command 9, 150, 151 

B 

BACKTRACE 63 
binding of operators 40, 146 
bit context 149 
bit operations 39, 146, 149 
bit-pattern 1, 2, 42 
block 14, 151, 155 
bootstrapping 133 
brackets, use of 40 
break-command (BREAK) 38, 154 
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C 

C programming language 42 

call-by-value 35, 76, 159 

capital letters 3 

CASE label 27, 154 

cell 1 

CG 79 

CH 82 • 

character constant 9, 145 

character set 3 

CHARCODE 88 

CHECKFOR 108 

code generator 79, 125, 130 

code optimisation 130 

colon 41, 159 

colon, missing 60 

commands 4, 150 

commands, analysis of 118 

comments 9, 160 

compilation, separate 5, 45 

compiler 5, 79, 124 

compiler portability 124 

compound commands 13, 14, 150, 152 

conceptual types 2, 34 

conditional commands 13, 17, 150, 152 

conditional expression 17, 18, 146 

conditional operator 18, 149 

constant, character 9, 145 

constant, decimal integer 9, 145 

constant, hexadecimal 145 

constant, octal 9, 145 

constant, string 23, 145 

constant-expression 16, 150 

constants 9, 145 

context determination of type 42 

context, bit 149 

context, truth-value 41, 149 

controlled variable 16, 152 

CPL 1 

cross-compiler 5 

D 

dangling references 76 

data types 2, 42 

DEBUG 67 

debugging 60 

decimal integer constant 9, 145 

declarations 3, 4, 8, 21, 22, 25, 26, 42, 

45, 155 

declarations, simultaneous 22, 75, 160 

DECLSYSWORDS 92 

DECVAL 82 

DEFAULT 27, 154 

definitions, analysis of 116 

division 17, 148 

DO 17, 161 

DO needed 61 

DYADIC 114 

dynamic free variable 26, 62 

dynamic variable declaration 8, 158 

dynamic variables 4, 8, 25, 62 

E 

EBCDIC 9 
elements 145 

end-of-line 9, 145 

ENDCASE 27, 154 

ENDCASE, omission of 76 

ENDSTREAMCH 11,47 

EQV 40, 146, 147 

error handling at runtime 62 

error handling 60 

errors, semantic 62 

escape conventions 9, 145 

expressions 4, 9, 16, 17, 18, 30, 146, 150 

expressions, analysis of 110 

extended relational expression 13, 148 

extent 4 

extra semicolons 60 

F 

FALSE 145 

field-selector 57 

FINDFILE 47 

FINDINPUT 47 

FIND0UTPUT 47 

FINISH 154 

FIX 57 

FLOAT 57 

floating point 57 

for-command 16, 152 

formal parameter 2, 35, 159 

formal syntax of BCPL 161 

formatted output 50 

FORMTREE 100 

Fortran 3, 7, 13, 76 

free variables, dynamic, 26, 62 

FREEBLK 55 

freestore management 55 

function call 7, 22, 159 

function declaration 22, 158 

functions 4, 7, 22 

G 

get-directive 8, 45, 160 

GETBLK 55 

GETBYTE 23, 49, 59 
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global declaration 26, 156 

global variable 25, 74 

global variables, misuse of 74 

global vector 4, 26, 45, 156 

GOTO, erroneous use of 76 

goto-command (GOTO) 41, 154, 159 

H 

hexadecimal constant 145 

I 

I/O 11,47 

identifier (name) 145 

if-command (IF) 13, 152 

IGNORE 108 

indirection 1, 30, 147 

indirection expressions 146 

input and output 11, 47 

input and output library 48 

INTCODE 133 

INTCODE assembler and 

interpreter 136 

INTCODE assembly language 134 

INTCODE example 135 

INTCODE machine 133 

integer representation 17 

internal types 2 

interpreter for INTCODE 136 

L 

label 41, 159 

language definition 145 

language extensions 47 

LASSOC 114 

LET .. . AND 22, 79, 160 

let-declaration (LET) 8 

LEVEL 52 

lexical analyser 79 

library 5, 47 

local variables 8, 25 

logical expressions 39, 146 

logical operators 39, 49 

LOOKUPWORD 84, 90 

loop-command (LOOP) 39, 154 

lower-case letters 3 

M 

machine independence 47 

manifest constant 2, 10, 157 

manifest declaration 10, 157 

MAPST0HE 63 

matrices 33 

MAXCOM 67 

mismatched parameters 77 

mismatched section brackets 61 

missing colon 60 

missing procedure 74 

Mod Comp II 67 

modularity 4 

modulo (remainder) operator 17, 146, 

148 

MULDIV 52 

multiplication 17, 148 

N 

names (identifiers) 8, 145 

name, multiple use of 75 

NAMETABLE 90 

NAMETABLESIZE 90 

NEEDS 27 

NEQV 40, 146, 149 

newline, use of 7, 9, 160 

NEWVEC 90, 100 

NEXTSYMB 80, 82 

NLPENDING 82 

NULLTAG 94 

number 9, 145 

O 

object machine 1, 124 

OCODE 79, 125 

OCODE example 129 

octal constant 9, 145 

operations 2 

operator precedence 40, 146 

operator precedence errors 77 

operators 17, 18, 30, 39, 146, 147, 149 

operators, omission of 76 

optimisation of code 130 

optional symbols 161 

OS6 stream structure 43 

output 11, 47 

output, mis-selection of 78 

overflow 17 

P 

PACKSTRING 24, 50 

parameter (actual) 21, 35, 159 
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parameter (formal) 21,35, 159 

parameter passing 35, 159 

parameter mismatch 77 

FERFORHGET 84, 96 

PL/I 7, 77 

pointers 30 

pointers, misuse of 75 

portability 5 

portability (compiler) 124 

potholes and traps 73 

precedence errors 77 

precedence of operators 40, 146 

precompilation 5 

primary expressions 146 

procedure call 21, 43, 159 

procedure declaration 21, 42, 45, 158 

procedure values 42, 158 

procedure values, misuse of 74 

procedure 4, 21, 42, 45, 158 

procedure, missing 74 

profile 67 

program 145 

PUTBYTE 3, 23, 49, 59 

R 

RANDOM 52 

RBCOM 118 

RBEXP 110 

ROOM 122 

RDBL0CKB0DY 104 

RDCDEFS .106 

RDCH 11,47 

RDEF 116 

RDSECT 108 

RDSEQ 104 

RDSTRCH 88 

RDTAG 84, 94 

READN 12, 48 

READNUMBER 82, 96 

REC.P, REC.L 102 

recursion 36 

relational expressions 13, 146 

relational operators 13, 146, 148 

relations 13, 148 

relations, extended / 13, 148 

remainder operator (REM) 17, 146, 148 

REPEAT 16, 153 

REPEATUNTIL 16, 153 

REPEATWHILE 14, 153 

repetitive commands 14, 151, 153 

reserved words 3 

resultis-command (RESULTIS) 22, 151, 

154 

return-command (RETURN) 22, 154 

REXP 82, 112 

REXPLIST 117 

RNAME 108 

RNAMELIST 33, 108 

routine call commands 7, 159 

routine declaration 158 

routines 4 

runtime error handling 62 

runtime errors 74 

runtime stack 126 

S 

scope 4 

scope of a label 160 

scope rules 38, 155 

section brackets 8, 14, 150 

section brackets, mismatched 61 

SELECTINPUT 11,47 

selectors (HI,. .., H5) 90 

SELECTOUTPUT 11,47 

semantic errors 62 

semicolon 9, 161 

semicolon, extra 60 

semicolons, omissions of 147 

separate compilation 5, 45, 74 

shift expressions 40, 146 

shift operators 40, 149 

simultaneous declaration 22, 160 

simultaneous declarations, misuse of 75 

SLOT 58 

space, use of 9, 160 

stack mechanism 62 

START 7 

static declaration 44, 157 

static variables 4, 44, 157 

storage cell 1 

store 1 

store management 55 

streams 11 

string constant 145 

string problems 62 

string, internal representation 31, 49, 

145 

strings 23, 49, 145 

subscription expressions 146 

subscripts, misuse of 75 

switchon-command 27, 151, 154 

SYMB 80 

SYN 79 

synonyms 161 

SYNREPORT 102 

syntax error 60 

syntax of BCPL 3, 161 
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T 

table (TABLE) 32, 150 

table expressions 146 

tabs 160 

tagged section brackets 14, 161 

tagging, inadvertant 61 

target code 79, 125 

TEST 17, 150, 152 

THEN 17, 150, 152 

THEN needed 61 

TRACE 67 

transfer commands 151 

transfer of control 154 

TREEVEC 100 

TRN 79 

TRUE 145 

truth values 14 

truth-value context 41, 149 

type determination by context 42 

types, conceptual 2, 34 

types, internal 2 

U 

uninitialised variables 78 

UNLESS 13, 17, 150, 152 

UNPACKSTRING 24, 50 

UNTIL 16, Ig 1, 153 

V 

valof-expression (VAL0F) 22, 146, 154 

value 1, 2 

variable declarations 8, 155 

variable names 8 

variables 2, 8, 25 

variables, uninitialised 78 

vector declaration 20, 31, 158 

vector, global 4, 26, 45, 156 

vectors as procedure parameters 36 

vectors of characters 23 

W 

WHILE 14, 153 

W0RDN0DE 82, 90 

W0RDSIZE 82, 90 

WRCH 11,47 

WRITED 48 

WRITEF 13,50 

WRITEHEX 49 

WRITEN 8, 48 

WRITEOCT 49 

WRITES 7,11,23,50 

X 

XDS Sigma 7 131 


