

TABLE OF CONTENTS

This pocket guide applies to the following BLISS compilers: Scope and Intent of This Guide
Presentation Conventions
BLISS-16C Version 4 Principal Characteristics of BLISS
BLISS-32 Version 1 Sample Common BLISS Program
BLISS-36 Version 1A ‘

SYNTAX SUMMARY

Order No. AV-H289A-TE
1.0 MODULESot i e it it ve e e e e

1.1 Module Switches
IMPORTANT NOTICE 2.0 EXPRESSIONS
2.1 Primariescc000...
Unlike BLISS-32, the BLISS-16C and BLISS-36 2.1.1 Numeric Literals
compilers are internal tools developed by DIGITAL 2.1.2 String Literals
for its own use. They are not available as products 2.1.3 o
of Digital Equipment Corporation. 214 Namesc0ccu.an
215 Blocksc000uun.
2.1.6 Structure References
21.7 Routine Calls
2.1.8 Codecomments
2.2 Operator Expressions
The information in this document is subject to change 2.21 Field Selectors
without notice and should not be construed as a com- 2.2.2 Operator Precedence
mitment by Digital Equipment Corporation. Digital 2.3 Executable Functions
Equipment Corporation assumes no responsibility for 2.3.1 Function Names
any errors that may appear in this document. 2.4 Control Expressions
2.4.1 Conditional Expressions
No responsibility is assumed for the use or reliability of 242 Case Expressions
software on equipment that is not supplied by Digital 24.3 Select Expressions ‘
or its affiliated companies, 244 Loop Expressions
245 Exit Expressions
Copyright © 1978 by Digital Equipment Corporation | 246 Return Expressions
: 3.0 CONSTANT EXPRESSIONS

The following are trademarks of Digital Equipment 3.1 Compile-Time Constant Expressions
Corporation: 3.2 Link-Time Constant Expressions .
4.0 DECLARATIONS

DIGITAL DECsystem-10 4.1 Common Declaration Attributes

DEC DECSYSTEM-20 (Structure, Field, Allocation-Unit,

PDP UNIBUS Extension, and Addressing-Mode)
DECUS VAX 4.2 Data Declarations

Printed in U.S.A.

4.2.1 Own Declarations
4.2.2 Global Declarations
4,23 External Declarations
4.24 Forward Declarations
4.2.5 Local Declarations
426 Stacklocal Declarations.
4.2.7 Register Declarations
4.2.8 Global Register Declarations
429 External Register Declarations
4.2.10 Map Declarations.
4.3 Structure Declarations
4.4 Field Declarations
4.5 Routine Declarations
45.1 Ordinary Routine Declarations ...
45.2 Global Routine Declarations
453 External Routine Declarations
454 Forward Routine Declarations

4.6 Linkage Declarations
4.7 Enable Declarations
4.8 Bound Declarations
4.8.1 Literal Declarations
4.8.2 External Literal Declarations.
483 Bind Data Declarations.
484 Bind Routine Declarations
4.9 Compiletime Declarations
4.10 Macro Declarations
4.10.1 Keyword Macro Declarations.
4.10.2 Positional Macro Declarations

4.1 ~ 'Require Declarations
4.12 Library Declarations
4.13 Psect Declarations
4,14 Switches Declarations
4,15 Label Declarations
4.16 Builtin Declarations
4.17 Undeclare Declarations
5.0 LEXICAL PROCESSING FACILITIES
5.1 Lexical Conditionals.
b.2 Lexical Functions
) Macro Calls
5.3.1 Keyword Macro Calls

53.2 Positional Macro Calls

6.0
6.1
6.2
6.3
6.4
6.5
7.0
8.0

PREDECLARED NAMES 35
Literals 35
Macros 35
Structurescueiinn.. 36
Linkages and Linkage-Functions ... 37
Supplementary Functions 38

MACHINE SPECIFIC NAMES 40

NAMES RESERVED FOR SPECIAL

PURPOSES 41

COMMAND SUMMARY

1.0
1.1
1o
1.3
2.0
2.1
2.2

BLISS-32 COMMANDS 42
Command Line Syntax. 42
Qualifiers 43
Summary of File Type Defaults. 47

BLISS-16C AND BLISS-36 COMMANDS 48
Command Line Syntax. 48
Command Switches 50

SCOPE AND INTENT OF THIS GUIDE

This guide presents a syntax summary for the family of
BLISS language dialects consisting of BL1SS-16C,
BLISS-32, and BLISS-36. It describes the Common
BLISS Language features that constitute the bulk of all
three dialects, plus the additional system-specific features
unique to each dialect. A summary of the command-line
syntax for the respective compilers is also provided.

The guide is primarily intended as a concise syntax
reference for knowledgeable users of BLISS. (It also
serves as a convenient means of comparing the several
dialects.)

As an additional feature, the guide briefly describes the
principal characteristics of BLISS and presents a short
sample program, for the benefit of readers with no prior
knowledge of the language.

PRESENTATION CONVENTIONS

Common BLISS Versus Dialect Syntax: All Common
BLISS syntax is printed in black; all variant syntax (and
any commentary associated with it) is printed in color. A
numeric flag (16, 32, or 36) at the left margin of the page

is used to indicate the dialect(s) to which the variant syntax
belongs.

Method of Definition: The general method of syntax
definition is the same as that employed in other BLISS
language documentation. A language construct definition
consists of a set of production rules. Each rule defines a
syntactic name (a descriptive name for a meaningful “piece”
of the language), often in terms of other, lower-level
syntactic names.

Syntax Notation: Each production rule consists of a
production name and the symbol — followed by a replace-
ment for the production name, indented on a new line.
Production names (always syntactic names) are lower-case

words of two or more letters, hyphenated if multiword
(for example, control-expression). Production-name
replacements may be other syntactic names, syntactic
literals, or a combination of the two. For example:

tested-loop-expression —
DO exp {WHILE | UNTIL} exp

Syntactic literals consist of all character strings that are
neither syntactic names nor the notational symbols de-
fined below.

The notational symbols and conventions used are as
follows:

® The vertical-bar symbol (|) separates multiple
alternatives listed on one line: otherwise, alterna-
tives are listed vertically (at a uniform level of
indentation; see Line Folding below).

® Braces, { }, enclose a set of alternatives, of which
one and only one is to be selected, or enclose a
single optional construct,

® The symbol *, ... " denotes an optional repeti-
tion of the item immediately preceding, with
successive instances separated by **,*".

® The symbol “ ... " denotes an optional repetition
of the item immediately preceding, with no
separating delimiter.

® The symbol “"———"" indicates omission of part
of an ordered sequence of alternatives, such as
the alphabet or the numerals O through 9.

® Line Folding: A replacement element appearing
on a new line that is further indented than the
preceding line indicates a continuation of the
preceding replacement element, rather than an
alternative to it. (Such “line folding’" is dictated
by line-length constraints.)

vi

® Defaults: Unconditional keyword defaults are
indicated by underlining of the default keyword.

Abbreviations: The following abbreviations are used:

exp for expression
ctce for compile-time-constant-expression
ltce for link-time-constant-expression

Note particularly that “exp’’ and “‘expression” are used
interchangeably {due to format constraints).

Also, any syntactic name that ends in “-name’’ or “-exp”
represents a name or expression, respectively, and is not
further defined.

Use of Italics: A few quite obvious deviations from the
standard presentation format occur, primarily to allow for
semantic comments. Such comments are always in italics.

PRINCIPAL CHARACTERISTICS OF BLISS

BLISS is a language designed for building system software.
It provides the higher-level language features that are
desirable for that purpose, and omits those that introduce
inefficiency or a degree of complexity inconsistent with

its performance and transportability goals. BLISS also
provides facilities for accessing specific hardware functions,
yet does so in a manner that clearly distinguishes between
machine-independent code (transportable Common BLISS)
and the elective machine-specific functions. Overall, it is
best characterized as a “‘medium level” language.

The principal characteristics of BLISS that differ from
most widely known languages are as follows:

@ All constructs of the BLISS language except
declarations are forms of expressions. Statements
which perform actions without producing values,
do not exist in BLISS. Whenever a BLISS expres-
sion is used in a statement-like way, it must be
terminated by a semicolon. The compiler will

then discard its value.

vii

® The name of a storage location always represents
the address of that storage focation. Thus, ad-
dress arithmetic can be accomplished in a simple
and consistent fashion. When the contents of a
storage location is needed, a fetch operator (.)
must prefix the name of the storage location.

® BLISS is a “typeless” language, that is, the type
of a given data item is not declared and is not an
attribute of the item. The interpretation of the
value of a constant or variable depends upon the
operator that is applied to it.

® A value is assigned to a storage location by means
of the normal assignment operator, “="". How-
ever, there is no restriction on the operand that
appears on the left-hand side of the assignment.
That is, the storage location operand can be any
expression yielding an address value.

® The familiar GOTO construct is excluded from
BLISS because it permits unclear and unreliable
patterns of control flow. Equally important,
"“GOTO-less” programs are more amenable to
global flow optimization. BLISS provides control
expressions that are inherently more effective,
including IF, CASE, and WHILE.

viii

SAMPLE COMMON BLISS PROGRAM

Note that this program calls on the “EZIO"' character-string
1/0 package for basic file and terminal 1/0 services.

MODULE LISTER (MAIN = LSTR) =

REGIN

'+

! This rrodram asks for a file namer orens the named
! filer and cories the file to the terminal.

EXTERNAL. ROUTINE
FILOFNy ! Ezio oren
FILCLS, ! Exio close
FILOUT, ! Ezio outrut
!

FILINF Ezio 1nrut

OWN ! Holds one line of text.
RUF ¢ VECTORECH$ALLOCATIONC(120)13

MACRO ! Outruts literal string to ttu.
MSG (§) =

FILOUT (-1yXCHARCOUNT(S) » CH$FTRC(UFLIT(S))) X5

ROUTINE LSTR =

BEGIN

LOCAL
LEN» I Length of the string.
FTR ! Fointer to buf.

| Orer the ttuy. Note! no filesrec.
FILOFN(-1y Or O» 0)i

FTR = CH$FTR(BUF)} ! Get rointer.
MSG(/ENTER FILE NAME: ‘)7 ! Fromet,
ILEN = FILIN(-1r 60y .FTR)} ! Get file name.

! Qren the file on channmel O.
IF NOT FILOFN(Oy LEN:s .FTRs Q)
THEN .
EEGIN ! Oren failed.
MSG(‘OFEN FAILED.)3}

RE TURN

ENDF

I Frocess each line
WHIIE 1 L0
BEGIN
LEN = FILIN(Q» 120r FTR):

1F .LEN EQL -1
THEN

EXITLOOF ¢ I End of file.
FILOUT(-1+ JILENs .FTR) I Qutrut the string.
END
FILELS(OYi . ! Close the 1neut file.
MSG(" DONE . ") ! A messade.
ENDIG
END
1 unoM

SYNTAX SUMMARY

1.0 MODULES

module =—&
MODULE module-head =
module-body
ELUDOM

module-head =
name { { moduleswitch ,...)}

module-body =
BEGIN declaration .. . END
{ declaration . . .}

declaration — See Section 4.0.

1.1 Module Switches

module-switch =
{ on-off-switch | special-switch |

on-offswitch —*

fCODE | NOCODE
DEBUG | NODEBUG
ERRS | NOERRS

< OPTIMIZE | NOOPTIMIZE
UNAMES | NOUNAMES
SAFE | NOSAFE

LZIP | NOZIP

special-switch =

[IDENT = quoted-string

LANGUAGE { language-ist)

LINKAGE (linkage-name }

LIST { list-option , . ..)

MAIN = routine-name

OPTLEVEL={0 |1 |2 | 3}

£ VERSION = quoted-string
ADDRESSING_MODE { mode-16)
ADDRESSING_.MODE { mode-spec , ...}
ENTRY (global-name ,...)
ENVIRONMENT (environ-option , ...}
OBJECT (object-option }

;OTS = guoted-string

1.0 MODULES, Continued

16

32

32

language-list =
COMMON
language-name , . . .
nothing

language-name —*
{BLISS16 | BLISS32 | BLISS36 }

Note: The effective default is ‘no checking’.

list-option —*

fSOURCE | NOSOURCE 3

REQUIRE | NOREQUIRE

EXPAND | NOEXPAND

TRACE | NOTRACE

{ LIBRARY | NOLIBRARY \
OBJECT | NOOBJECT

ASSEMBLY | NOASSEMBLY

SYMBOLIC | NOSYMBOLIC

BINARY | NOBINARY

| COMMENTARY | NOCOMMENTARY |

j node-16 —= ‘
L {ABSOLUTE | RELATIVE }

- mode-spec =

{EXTERNAL = mode-32
NONEXTERNAL = mode-32

™ mode-32 =

ABSOLUTE

GENERAL

LONG_RELATIVE
WORD_RELATIVE

[~ object-option —*

L {ABSOLUTE | RELOCATABLE }

"“‘ ENVIron-option =—s

| (‘BUSSJO_OTS | BLISS36C_OTS
E] KA10 | KI10 | KL10

| EXTENDED
%‘ 1 STACK = segment-name

TOPS10 | TOPS20

2.0 EXPRESSIONS

32

32

expression =
primary
operator-expression
executable-function
control-expression

primary —*
numeric-literal
string-literal
plit
name)
block
structure-reference
routine-call
codecomment J

~

2.1.1 Numeric Literals

numeric-literal =
decimal-iteral
integer-iteral
character-code-literal
float-literal

decimal-literal =™
opt-sign decimal-digit . ..

opt-sign =
{+ | = | nothing }

decimal-digit —*

{foj1l2l—— 1819}

integer-literal =%
(%8B | %0 | %DECIMAL | %X }
‘ optsign integer-digit ...’

integer-digit =
o1l —19
AlBlc|DlEI|F
character-code-literal =
%C * quotedcharacter *

float-literal —=
{ %E ‘mantissa {E exponent } ‘ }
%D ‘mantissa {D exponent} !

3

2.0 EXPRESSIONS, Continued

16,32
36
32

16,32

16, 32

16,32

2.1.2 String Literals

string-literal =
{string-type } quoted-string

quoted-string =
‘ quoted-character . , .’

quoted-character —*
printingchar-except-apostrophe
blank
tab

e

Note: Two consecutive apostrophe characters
represent a single apostrophe within a
quoted-string.

string-ty pe ~—e
%ASCII | %ASCIZ
%RAD50_11 | %ASCIC

%RAD50_10 | %SIXBIT
%P

2.1.3 Plits

plit ==
{PuIT | UPLIT}
{al!oc-unlt}
{ plitsitem , ...)

plititem —*
plit-group
plit-expression
plit-string

plit-group =—*

alloc-unit
REP replicator OF

REP replicator OF alloc-unit
{ plitsitem , . ..)

replicator —=
ctce

plit-expression —*
Itce

plit-string =
string-literal

2.0 EXPRESSIONS, Continued

o BYTE
' WORD
32

alloc-unit —*

LONG
Default for 16: WORD, for 32: LONG.

2.1.4 Names

name =%
{letter | dollar | underscore }
letter | dollar | underscore
digit | nothing

underscore =%

digit —

{ol112]-— 19}

Note: A name may not contain more than 15
characters.

2.1.5 Blocks

block =—*
labeled-block
unlabeled-block

labeled-block =*

attached-abel ... unlabeled-block

attached-label —*
label-name :

unlabeled-block ==*
BEGIN block-body END
(block-body }

2.0 EXPRESSIONS, Continued

block-body =—*
{declaration 50 }
{bloek-action oa }
{biock—value}

Note: The block-body must not be null.

block-action =—*
expression ;

block-value “=*
expression

2.1.6 Structure References

structure-reference =
ordinary-structure-reference
general-structure-reference

ordinary-structure-reference =
segment-name [{access-actual e }]

segment-name ~%
name — ofa data-segment declared with a
structure attribute,; see Section 4.2.

access-actual =
{exp | field-name | nothing}

field-name — See field-attribute, Section 4.1,

general-structure-reference —*
structure-name [access-part
{;aIIoc-actuaI S

structure-name =+
name — of user-dec/ared or predeclared
structure; see Sections 4.3 and 6.3.

access-part ~
{5egment-expre55i0n]'
, access-actual , . . }

alloc-actual — See structure-attribute, Section 4. 1.

2.0 EXPRESSIONS, Continued

2.1.7 Routine Calls

routine-call ==
ordinary-routine-call
general-routine-call

ordinary-routine-call =%
routine-designator
({actuaiparameter L. })

routine-designator =%
primary

actual-parameter ==
expression

general-routine-call ==
linkage-name { routine-address

{, actual-parameter , . . . 3]

linkage-name - See Sections 4.6 and 6.4 for a summary
of linkage names.

routine-address =%
expression

2.1.8 Codecomments
codecomment —&

CODECOMMENT quoted-string , .. . :
block

2.2 Operator Expressions

operator-expression =*
fetch-€expression
prefix-expression
infix-expression
assign-expression

fetch-expression =%
primary {field:selector}

field-selector — See Section 2.2.1.

2.0 EXPRESSIONS, Continued

prefix-expression =&
{+ |- | NOT} opexp

op-exp =
primary
operator-expression
executable-function

executable-function — See Section 2.3.

infix-expression ==
opexp infix-operator op-exp

infix-operator ==
(v 1= 1)
/ | MOD |
EQL | EQLA | EQLU
NEQ | NEQA | NEQU
LSS | LSSA | LSSU
LEQ | LEQA | LEQU
GTR | GTRA | GTRU
GEQ | GEQA | GEQU
AND | OR
LEQV | XOR

A

assign-expression =
op-exp {field-selector } = op-exp

2.2.1 Field Selectors

field-selector —=

< position-exp, size-exp {;sign-ext-f!ag } >

sign-ext-flag ==
ctce — Value: Oor 1

Note: The permissible value range for position-exp (p)

and size-exp (s) is as follows:

BLISS-16 BLISS-32 BLISS-36

0<p 0 <p
pts <16 pts <36
0<s <16 0<s<32|(0<s <36

2.0 EXPRESSIONS, Continued

2.2.2 Operator Precedence

The operator-expressions are listed in the following

table in order of decreasing priority level, with an

associativity for the operators at each level. (Abbre-

viations: exp1 and exp2 represent any op-exp as
defined in Section 2,2; 'R" stands for right and

“L" for left.)
Operator Associates
Priority Expression from
highest fetch-expression RtolL
¥
exp2
{—} RtolL
expl Aexp2 LtoR
MOD
expl * exp2| LtoR
/
+
exp1 exp2 LtoR
EQLx
' NEQx
LSS
expl SSx exp2] LtoR
LEQx
GTRx
GEQOx
NOT exp2 RtolL
expl AND exp2 LtoR
expl OR exp2 LtoR
EQV
1 xp2| LtoR
i {XOR} s
lowest assign-expression RtolL

2.0 EXPRESSIONS, Continued 2.0 EXPRESSIONS, Continued

i machine-specific-function-name =%
Gl Do g — See Section 7.0 for a summary of the

machine-specific function names.

executable-function =
executable-function-name

{ {actual-parameter .. }) cond-handling-function-name =&
:) SIGNAL
16,32
executable-function-name = SIGI‘I\IAL\:Jz'I;)OP
standard-function-name a_SET‘JN |

linkage-function-name
supplementary-function-name
miachine-specific-function-name

2.4 Control Expressions

control-expression ™%

16, 32 cond-handiing-function-name ;
conditional-expression
actual -parameter =% case-expression
expression select-expression
loop-expression
2.3.1 Function Names exit-expression

return-expression
standard-function-name ==+
The names and syntax of the standard functions, plus

1 7 ioti iti ions
brief semantic descriptions of each, are as follows: 2.4.1 Conditional Express

ABS (el) — Absolute value of conditional-expression =

signed integer IF exp THEN exp J{EI_SE exp }
MAX (el,e2,...} — Maximum of signed

integer set 2.4.2 Case Expressions
MAXA (el1,e2,...) — Maximum of address-

value set ' case-expression —*
MAXU (e1,e2,...) — Maximum of unsigned CASE exp

integer set FROM ctce TO ctce OF
MIN (e1,e2,...) — Minimum of signed SET

integer set case-line . . .
MINA (el,e2,...) — Minimum of address- TES

value set
MINU (e1,e2,...) — Minimum of unsigned caseline —*

integer set { case-label ,...] : case-action ;
SIGN (e1) — Sign of a signed integer

value - case-label =
%REF (e1) — Temporary address of ctee

actual parameter ctce TO ctce

where el and e2 represent expressions. - INRANGE
OUTRANGE
linkage-function-name
~ See Section 6.4 for a summary of the case-action —>
linkage functions. EXDIESSION

supplementary-function-name =%
— See Section 6.5 for a summary of the
supplementary functions.

10 11

2.0 EXPRESSIONS, Continued

24.3 Select Expressions

select-expression ==
select-type
select-index OF
SET

select-line , ..
TES

select-type —*

SELECT | SELECTA | SELECTU
SELECTONE | SELECTONEA | SELECTONEU}

select-index —*
expression

select-ling =
[select-label ,...] : select-action :

selectfabel =
exp
exp TO exp
OTHERWISE
ALWAYS

select-action =
expression

2.4.4 Loop Expressions
loop-expression —*
indexed-loop-expression}

tested-loop-expression

indexed-loop-expression =
index-loop-type name

{FROM exp }{TO exp } i

{BY exp}
DO exp {

index- oop-type —*
INCR | INCRA | INCRU
DECR | DECRA | DECRU

-

12

2.0 EXPRESSIONS, Continued

tested-loop-expression =
pre-tested-loop
post-tested-loop
pre-tested-loop =%
{WHILE | UNTIL} exp DO exp

post-tested-loop —*
DO exp {WHILE | UNTIL} exp

245 Exit Expressions

exit-expression ==
leave-expression
exitloop-expression

leave-expression =%
LEAVE label-name { WITH exp }

exitloop-expression
EXITLOOP {exp }

246 Return Expressions

return-expression ==
RETURN {exp }

3.0 CONSTANT EXPRESSIONS

3.1 Compile-Time Constant Expressions (ctce)

ctce =%
— is any constant expression that can be

evaluated during compilation of the module
in which it appears.

3.2 Link-Time Constant Expressions (ltce)

ltce =
— is any constant expression that can be
evaluated by the time the module is bound
into executable form by the linker.

13

TIONS, Continued
4.0 DECLARATIONS 4.0 DECLARATIO ontinu

i alloc-actual =—*
declaration =+

ctce
("data-declaration) allocation-unit
- i 32 : .
:.trlL:LureI dec!aratmn & [extension-attribute
ield-dec aratlon_ nothing
routine-declaration
linkage-declaration The Field Attribute

16, 32 enable-declaration

bound-declaration field-attribute =*

¢ compiletime-ds?claration - FELD (field-name)
macroadectaratu.:n r field-set-name e
require-declaration
Iibrary-declari.at'lon Note: See Section 4.4 for definition of field-name
18, 32 psect-declaration

i : and field-set-name.
switches-declaration

label-declaration
builtin-declaration
\undeclare-declaration

The Allocation Unit

allocation-unit =

o aal BYTE)
6,32 WORD }»
4.1 Common Declaration Attributes B _LONG J
The following attributes are either common to many of Default for 16: WORD, for 32: LONG
the declarations named above or have a fairly complex
syntax structure (or both): The Extension Attribute
structure-attribute “extension-attribute =
field-attribute per {SIGNED | UNSIGNED }
i, 32" allocation-unit
Fy . . " - n A o =1
N extension-attribute The Addressing-Mode Attribute
3z addressing-mode-attribute

wode-attribute =%
ESSING_MODE { mode-32 }

These attributes are defined immediately below, prior
to the individual declaration descriptions. All other
attributes are defined in the declaration descriptions mode-3 N
themselves, 32 ;’ ABSOLUTE |
j GENERAL
) LONG_RELATIVE
The Structure Attribute L

structure-attribute =+
-[RE F } structure-name
{ [alloc-actual L1}

structure-name — Ejther user-declared or predeclared:
see Sections 4,3 and 6.3.

15
14

4.0 DECLARATIONS, Continued

4.2 Data Declarations

data-declaration =%

" own-declaration

global-declaration

external-declaration

32,36 forward-declaration

local -declaration

stacklocal -declaration)

register-declaration

. [global-register-declaration
external-register-declaration

gmap-declaratlon)
4.2.1 Own Declarations

own-declaration =%
OWN own-item , ... ;

own-item =
own-name {: own-attribute . . }

own-attribute =—#
structure-attribute
field-attribute
INITIAL (plit-item , ...}

allocation-unit
16,32 q
extension-attribute
32 ALIGN (boundary-ctce)
VOLATILE

4.2.2 Global Declarations

global-declaration =*
GLOBAL global-item ,...;

global-item =*
global-name {: global-attribute . . }

global-attribute =
structure-attribute 1 .
field-attribute

INITIAL (plit-item , . ..)

allocation-unit
16,32 >

A

extension-attribute
32 ALIGN (boundary-ctce)

VOLATILE
32 LWEAI(

16

4.0 DECLARATIONS, Continued

4.2.3 External Declarations

external-declaration ===
EXTERNAL external-item ,... ;

external-item ==#

external-name {: external-attribute . . .

external-attribute =%
structure-attribute
field-attribute

allocation-unit
16, 32) .
extension-attribute
32 addressing-mode-attribute
VOLATILE
32 WEAK

4.2.4 Forward Deciarations

[forward-declaration =
FORWARD forward-item ,... ;

forward-item —*

32,36 forward-name { : forward-attribute . . .

forward-attribute =&
structure-attribute
field-attribute
allocation-unit

32 extension-attribute

addressing-mode-attribute

32, 36 VOLATILE

4,25 Local Declarations

local-declaration ==*
LOCAL local-item,...;

local-item ==*
local-name {: local-attribute . . }

local-attribute =+
structure-attribute
field-attribute

allocation-unit
16,32))
extension-attribute
32 ALIGN (boundary-ctce)

VOLATILE

17

4.0 DECLARATIONS, Continued

4.0 DECLARATIONS, Continued

4.2.6 Stacklocal Declarations 4.2.10 Map Declarations
stackiocal-declaration =% .
-declaration =
STACKLOCAL local-item , ... ; e T o
4.2.7 Register Declarations > map-itern =

B : - ibute . ..
register-declaration =% TEFHTETTS = WS

REGISTER register-item , ... ;

I

3 map-attribute =
structure-attribute
field-attribute
allocation-unit
extension-attribute
VOLATILE

register-item =%

reg-name {: register-attribute . . } } I:
{ 16,32

reg-name | = ctce} { : register-attribute . . . }

register-attribute =—*
structure-attribute
field-attribute
allocation-unit
extension-attribute

4.3 Structure Declarations

16,32 structure-declaration =

STRUCTURE structure-definition , . .. ;

1

4.2.8 Global Register Declarations structure-definition —

structure-name
[1 access-formal , .. }
: allocation-formal , . .. }]
= {[structure-size-exp |
structure-body

global-register-declaration =%
GLOBAL REGISTER global-reg-item , .. . ;

global-reg-item =

32, 36
global-reg-name = ctce {: register-attribute . . }
) . i access-formal =%
register-attribute — See Section 4.2.7.
32, 36 I:

name
4.2.9 External Register Deciarations AeEEiEniamiE] =

t I] decl Ao s allocation-name {: allocation-default}
external -register-declaration

EXTERNAL REGISTER external-reg-item , ... ; allocation-default =+

i ctce
external-reg-item =

ext-reg-name {= ctce} { : register-attribute . . } structure-body —*

i i ; address-expression {field-selector }
register-attribute -— See Section 4.2.7.

field-selector — See Section 2.2.1.

18 19

4.0 DECLARATIONS, Continued

4.4 Field Declarations

field-declaration ==

FIELD
field-definition

field-set-definition =—*
field-set-name =
SET
field-definition , . . .
TES

field-definition =—#

field-name = [fieldcomponent ,...]

fieldcomponent =+
ctce

4.5 Routine Declarations

routine-declaration =
ordinary-routine-declaration
global-routine-declaration
external-routine-declaration
forward-routine-declaration

4.5.1 Ordinary Routine Declarations

ordinary-routine-declaration =—*
ROUTINE routine-definition , . .. ;

routine-definition ==

routine-name { (formal-name , . ..) 1

: routine-attribute . . | }
= routine-body

routine-attribute =
NOVALUE
linkage-name

linkage-name — See Sections 4.6 and 6.4.

routine-body =+
expression

20

4,0 DECLARATIONS, Continued

field-set-definition} ,

32

45.2 Global Routine Declarations

global-routine-declaration —*
GLOBAL ROUTINE
global-routine-definition , . . . ;

global-routine-definition =—*
routine-name { { formal-name , . .
{: global-routine-attribute . . .
= routine-body

global-routine-attribute =%
NOVALUE

linkage-name
WEAK

linkage-name — See Sections 4.6 and 6.4,

routine-body =—*
expression

45.3 External Routine Declarations
external-routine-declaration =%
EXTERNAL ROUTINE

external-routine-item , ... ;

external-routine-item =%

0}

routine-name {: ext-routine-attribute . . .

ext-routine-attribute =
NOVALUE
linkage-name

WEAK

|: addressing-mode-attribute
32

linkage-name — See Sections 4.6 and 6.4.
454 Forward Routine Declarations
forward-routine-declaration =%

FORWARD ROUTINE
forward-routine-item , . . . ;

forward-routine-item =

routine-name {: fwd-routine-attribute . . . }

21

4.0 DECLARATIONS, Continued

4.0 DECLARATIONS, Continued

fwd-routine-attribute —
NOVALUE
linkage-name
addressing-mode-attribute
linkage-name — See Sections 4.6 and 6.4.

4.6 Lirkage Declarations

linkage-declaration —

LINKAGE linkage-definition , . . . ;

linkage-definition =—s
linkage-name = linkage-type
(parameter-iocation , . ..) }
{ : linkage-option . . . }

linkage-type =t
¢/ CALL
JSR | EMT | TRAP |

|

[

< 10T | INTERRUPT
1 usB

\.PUSHJ | F10 .

parameter-location =
STANDARD
REGISTER = ctce
nothing

linkage-option =

~ CLEARSTACK | RTT

| GLOBAL (giobatsegment , . . .)
ii PRESERVE (ctce,...)

< NOPRES fE {ctee,...)

-~

/
E
| F
E LINKAGE_REGS { ctce, ctce, ctce) J
. PORTAL >

NOTUSED (ctce ,...)

global-segment =g

gl nbai-regis*terknmﬁe = ctice
Note: Al syntax elements denoted by “ctce” in this
section represent register-number expressions.
Also, the order in which registers are specified
in the LINKAGE_REGS option is: SP, FP,
value-retum.

22

16,32

4.7 Enable Declarations

[~ enable-declaration =—*

ENABLE handler-name
{ (enable-data-name L) b

handler-name — Must be a declared routine-name.

enable-data-name — Must be declared in an own-,
global-, local-, stacklocal-,
external-, or forward-declaration,
with the VOLATILE attribute,

4.8 Bound Declarations

bound-declaration —+
literal-declaration
external-literal declaration
bind-data-declaration
bind-routine-declaration

4.8.1 Literal Declarations

literal-declaration =&
R literal-item ;
GLOBAL LITERAL o

literal-item =

literal-name = ctce

{ : literal-attribute . . . }
literal-attribute —
{SIGNED | UNSIGNED } (ctce)

WE AK

Naote: WEAK applies to the GLOBAL form only.
4.8.2 External Literal Declarations
external-literal-declaration —*

EXTERNAL LITERAL

external-literal-item , . .. ;

external-literal-item —*
ext-literal-name {: literal-attribute . . }

23

4.0 DECLARATIONS, Continued 4.0 DECLARATIONS, Continued

literal-attribute = 4.9 Compiletime Declarations
{SIGNED | UNSIGNED } (ctce } :
32 WEAK compiletime-declaration ==

) . COMPILETIME compiletime-item pooo g
4.8.3 Bind Data Declarations
compiletime-item ===

bind-data-declaration —* compiletime-name = initial-value
BIND . .
GLOBAL BIND [Dinddatantem, ... , initial-value =—
ctce
bind-data-item —*
bind-data-name = expression Note: A compiletime-name value may be changed
{ : bind-data-attribute . . . } during compilation by the %ASSIGN lexical

function (see Section 5.3).
bind-data-attribute ==

structure-attribute 4.10 Macro Declarations
field-attribute
allocation-unit macro-declaration ==
16,32 extension-attribute keyword-macro-declaration }
VOLATILE positional-macro-declaration
32 WEAK

4.10.1 Keyword Macro Declarations

Note: WEAK applies to the GLOBAL form only.
keyword-macro-declaration =&

4.8.4 Bind Routine Declarations KEYWORDMACRO keyword-macro-definition
bind-routine-declaration =% keyword-macro-definition ==+
BIND ROUTINE keyword-macro-name (keyword-formal , . . . }
GLOBAL BIND ROUTINE = macro-body %

bind-routine-item , . . .,
keyword-formal ==

bind-routine-item —* name { = keyword-default-parameter }
bind-routine-name = expression
{: bind-routine-attribute . . . } keyword-default-parameter =—s

{Jexeme oc }

bind-routine-attribute —*

NOVALUE macro-body =+
linkage-name any-lexeme-except-% . . .
32 WEAK

Note: WEAK applies to the GLOBAL form only. '

linkage-name — See Sections 4.6 and 6.4.

24 25

4.0 DECLARATIONS, Continued

4.0 DECLARATIONS, Continued

4.10.2 Positional Macro Declarations

positional-macro-declaration =%

MACRO positional-macro-definition , ... ;

positional-macro-definition =%
simple-macro
conditional-macro
iterative-macro

simple-macro =+
macro-name { { name , ...)}
= macro-bedy %

conditional-macro =%
macro-name 1 { name , . ..)]
= macro-body %

iterative-macro =
macro-name { (name , . - . y}
[name , ...]
= macro-body %

macro-body —*
any-lexeme-except-% . . .

4.11 Require Declarations

require-declaration —*
REQUIRE file-designator;

file-designator —*
quoted-string

4.12 Library Declarations

library-declaration —*
LIBRARY file-designator;

file-designator =
quoted-string

26

16, 32

32

32

4,13 Psect Declarations

psect-declaration —*
PSECT psect-definition , . ..

psect-definition =—*
storage-class = psect-name
{(psect-attribute , . . .)}

storage-class ==

OWN

GLOBAL

1fLW

CODE
psect-attribute =
[EXECUTE | NOEXECUTE
WRITE | NOWRITE
OVERLAY | CONCATENATE
LOCAL | GLOBAL
{ READ | NOREAD %
SHARE | NOSHARE
PIC | NOPIC

ALIGN { boundary-ctce)
Naddressw’ngvrnode-attribute

-

4.14 Switches Declarations

switches-declaration —»
on-off switch-it
SWITCHES SwrterEerm
| special-switch-item
on-off-switch-item =+
ERRS | NOERRS
OPTIMIZE | NOOPTIMIZE
SAFE | NOSAFE

ZIP | NOZIP
UNAMES | NOUNAMES

special-switch-item =
LANGUAGE (language-list)
LINKAGE (linkage-name)
LIST (list-option ,...)

ADDRESSING_MODE { mode-spec , . . .

language-list — See Section 1.1.

27

4.0 DECLARATIONS, Continued

linkage-name — See Sections 4.6 and 6.4.
list-option — See Section 1.1.
mode-spec — See Section 1.1.

4.15 Label Declarations

label-declaration =+
LABEL label-name , ... :

4,16 Builtin Declarations

builtin-declaration ==
BUILTIN builtin-name , . .. ;

builtin-name — See Section 7 for a summary of the
machine-specific names that may be

declared as builtin-names.

4.17 Undeclare Declarations

undeclare-declaration =+
UNDECLARE undeclared-name , ... ;

28

5.0 LEXICAL PROCESSING FACILITIES

The compile-time features described in this section allow condi-
tional compilation of alternative portions of the source text, and
allow extensive modification and expansion of the source text
during the compilation process. These features are lexical condi-
tionals, lexical functions, and macro calls {in conjunction with the
macro-declaration facility).

5.1 Lexical Conditionals

lexical-conditional ==
%I F lexical-test
%THEN consequent-lexeme . . .

%E LSE alternative-lexeme . . .
nothing

%FI

lexical-test =
ctee

Note: Either the consequent-lexeme or the alternative-
lexeme may be null.

5.2 Lexical Functions

The thirteen categories of lexical-functions are as follows:

String Functions
Delimiter Functions
Name Functions
Sequence-Test Functions
Bits Functions
Allocation Functions
Fieldexpand Functions
Calculation Functions
Compiler-State Functions
Advisory Functions
Title Functions

Quote Functions

Macro Functions

The individual functions corresponding to these categories are
given below, with brief semantic descriptions of each.

String Functions

%CHAR (ctce , ...}
Returns a quoted-string formed by interpreting the
numeric value of each ctce as a single ASCII character

29

5.0 LEXICAL PROCESSING FACILITIES,
Continued

code, and concatenating the corresponding characters.
E.g., %CHAR{65,66,67,39,97,98,99) is replaced by
'ABC"'abc’.

%STRING { string-param , . ..)
Returns a single quoted-string formed by concatenating
the characters represented by each string-param. Each
string-param, after evaluation, must result in a quoted-
string, a name, a numeric-fiteral, or a null lexeme. E.g.,
%STRING(23,%B'~111') is replaced by ‘23-7".

%EXACTSTRING (length, fill, string-param , . ..)
Returns a quoted-string as formed by %STRING, but
either truncated or extended on the right as specified
by the ‘length’ ctce value, and filled if necessary as
specified by the ‘fill’ ctce value (interpreted as for
%CHAR). E.g., %EXACTSTRING(6,%C'9’,'ABC’} is
replaced by ‘ABC999'.

%CHARCOUNT (string-param , ...)
Evaluates string-params as for %STRING, and returns a
numeric-literal equal to the count of characters within
the resulting string. E.g., %CHARCOUNT('A"C’,23) is
replaced by 5.

Delimiter Functions

%EXPLODE { string-param ,...)
Forms an intermediate quoted-string from string-params
as for %STRING, and returns a comma-separated list of
quoted-strings, each consisting of a single character of
the intermediate string {in corresponding sequence).
E.g., %EXPLODE('ABC’,%0'77’) is replaced by ‘A’,'B’,
‘C''6','3"; i.e., 9 lexemes.

%REMOVE (parameter)
Returns the indicated parameter after removing any

enclosing (and matched) parentheses, square brackets
{[1}, or angle brackets {<>).

Name Functions

%NAME (string-param ,...)

Returns a name formed by the characters represented by
the string-params, which are interpreted as for %STRING.
E.g., %6NAME({’ 302’ beta) is replaced by 302BETA (as a

namel.

30

5.0 LEXICAL PROCESSING FACILITIES,
Continued

Sequence-Test Functions

%NULL (parameter,...)
Returns the literal 1 if all of the given parameters are
nuil; returns 0 otherwise. E.g., %NULL{ALPHA, DELTA)
is replaced by 0.

%IDENTICAL (parameter , parameter }
Returns the literal 1 if the two parameters {after
evaluation as for a normal macro call) consist of
identical lexeme sequences: returns O otherwise.
E.g., %IDENTICAL(A+B,a+b) is replaced by 1.

Bits Functions

%NBITS (ctee , ...)
Returns the minimum number of bits needed to represent
any of the ctce parameters (i.e., including the largest),
interpreted as signed integers, in a sign-extended field.
E.g., %NBITS(7,2} is replaced by 3. %NBITS(-8) is
replaced by 4.

%NBITSU (ctce ,...)
Returns the minimum number of bits needed to represent
any of the ctce parameters (i.e., including the largest},
interpreted as unsigned integers, in a zero-extended
field. E.g., %NBITSU(7,2) is replaced by 3. %NBITSU
{~8,7) is replaced by %BPVAL.

Allocation Functions

%ALLOCATION { data-segment-name)
Returns the number of storage units allocated for the
specified data segment. E.g., using the BLLISS-32
compiler: %ALLOCATION(X) with X declared LONG
is replaced by 4.

%SIZE (structure-attribute)
Returns the number of storage units that would be
allocated for a data structure declared with the
specified structure-attribute. E.g., using the BLISS-32
compiler: %SIZE(VECTOR[10,WORD]) is replaced
by 20.

31

5.0 LEXICAL PROCESSING FACILITIES,
Continued

5.0 LEXICAL PROCESSING FACILITIES,
Continued

Fieldexpand Functions

%EIELDEXPAND { field-name {,ctce)
Returns the nth field-<component value of field-name,
where n is specified by ctce as n—1. If the ctce param-
eter is null, all fieldcomponent values of the field-name
are returned, as a comma-separated list. E.g., If
DCB_C=[0,11,16,3], then %FIELDEXPAND(DCB_C,2)
would be replaced by 16.

Calculation Functions

%ASSIGN { compiletime-name , ctce)
Assigns the ctce value as the new value of the specified
COMPILETIME name.

%NUMBER (number-param)
Returns a numeric-literal formed from the value repre-
sented by number-param, which must be either a
numericHiteral, a literal-name, or a quoted-string con-
sisting of decimal digits with optional sign. E.g.,
%NUMBER(%0’100°) is replaced by 64.

Compiler-State Functions

%DECLARED (name }
Returns the literal 1 if the given name lexeme is a
user-declared name (i.e., not predeclared); returns O
otherwise.

%SWITCHES (on-off-switch-name , . . .)
Returns the literal 1 if all given on-off-switch-names
match the current on-off-switch settings; returns O
otherwise.

%B1SS (language-name }
Returns the literal 1 if the given language-name
corresponds to the compiler processing the module;
returns 0 otherwise. (Valid language-names are
BLISS16, BLISS32, and BLISS36.)

%VARIANT
Returns a numeric-literal representing the setting of
/MARIANT in the compilation command.

32

Advisory Functions

%ERROR (string-param , ...)

Causes an error diagnostic to be produced (by the

compiler) from the string-params, processed as by
%STRING.

*%ERRORMACRO (string-param , .. .)

Causes an error diagnostic to be produced {by the
compiler) from the string-params, processed as by
%STRING, and causes all currently active macro
expansions to be terminated.

%WARN (string-param , .. .)

Causes a warning diagnostic to be produced (by the
compiler) from the string-params, processed as by
%STRING.

%INFORM (string-param , . . .)

Causes an informational diagnostic to be produced (by

the compiler) from the string-params, processed as by
%STRING.

%PRINT (string-param , . ..)
Causes a line to be included in the listing file (if any)
consisting of the string-params, processed as by %STRING.

Title Functions

%TITLE guoted-string

Incorporates the quoted-string into the title portion of
listing-page header.

%SBTTL quoted-string

Incorporates the quoted-string into the subtitle portion
of listing-page header.

Quote Functions

%QUOTE

Inhibits lexical binding of the lexeme following the
function name.

SUNQUOTE

Forces lexical binding of the lexeme following the

function name, even where it would not normally be
bound.

g8

5.0 LEXICAL PROCESSING FACILITIES,
Continued

%EXPAND
Forces lexical binding of the lexeme following the
function name: and, if that lexeme is itself a macro or
lexical -function name, expands the macro call or
evaluates the function.

Macro Functions

%BREMAINING
Returns a comma-separated list consisting of any actual
parameters of the call that, during expansion, are not
yet associated with formal parameters.

%LENGTH
Returns the number of actual parameters in the call.

%COUNT
Returns the recursion depth if within a conditional
macro, or the number of completed iterations if
within an iterative macro.

%EXITITERATION
Terminates expansion of the current iteration of an
iterative macro call. {For a noniterative expansion, this
function is equivalent to %EXITMACRO.)

%EXITMACRO
Terminates expansion of a macro call.

5.3 Macro Calls

macro-cail =

keyword-macro-call
positional-macro<all

5.3.1 Keyword Macro Calls

keyword-macro-call =+
name
{ keyword-macro-actual , ...}
[keyword-macro-actual , ...]
< keyword-macro-actual , ... >

keyword-macra-actual —*
keyword-formal-name = {iexeme .. }

34

5.0 LEXICAL PROCESSING FACILITIES,
Continued

5.3.2 Positional Macro Calls

positional-macro-call ==
name
nothing
(lexeme ...)
[lexeme...]
< lexeme ... >

6.0 PREDECLARED NAMES

6.1 Literals

The literal names and values predeclared in every module are:

Name Value
BLISS-16 BLISS-32 BLISS-36
%BPVAL 16 32 36
%BPADDR 16 32 18
%BPUNIT 8 8 36
%UPVAL 2 4 1
6.2 Macros

The macros predeclared in every module are:

For BLISS-16:
%BLISS16 [] = %REMAINING %
%BLISS32 [] = %
%BLISS36 [] = %

For BLISS-32:
%BLISS16 [] = %
%BLISS32 [] = %REMAINING %
%BLISS36 [] = %

For BLISS-36:
%BLISS16 [1 = %
%BLISS32[] = %
%BLISS36 [1 = %REMAINING %

35

6.0 PREDECLARED NAMES, Continued

6.0 PREDECLARED NAMES, Continued

6.3 Structures
The structures predeclared in every module are:

For BLISS-16:

STRUCTURE
VECTOR [N, UNIT=2 EXT=0] -
[N=UNIT]

(VECTOR +=UNIT)<C0,8+UNIT,EXT>,

BLOCK[O,P,S,E;BS,UNIT=2] =
[BS=UNIT]
(BLOCK+O=UNIT)<P S E>,

BLOCKVECTORI[!,0,P,S,E:N,BS,UNIT=2]=
[N«BS=UNIT]
(BLOCKVECTOR+(1+BS+0)+«UNIT)<P S E>,

BITVECTOR[I:N] =
[(IN+15)/16]1+2]
(BITVECTOR+1/16)<1 MOD 16,1,0>;

For BL1SS-32:

STRUCTURE
VECTOR[1:N,UNIT=4, EXT=0] =
[NsUNIT)

(VECTOR+IxUNIT)<0,8+UNIT EXT:,

BLOCK(O,P,S,E:BS,UNIT-4] -
[BS«UNIT]
{BLOCK+O«UNIT)<P,§ E>,

BLOCKVECTOR(I,0,P.S,E;N,BS, UNIT=4]=
[N*BS=UNIT]

(BLOCKVECTOR*(IxBS+O}«UNIT})<P,S E>,

BITVECTORI[I;N] =
[(N+7)/8]
(BITVECTOR)<1,1,0>;

36

For BLISS-36:

STRUCTURE
VECTORII;N]=
[N]
(VECTOR+1)<0,36>,

BLOCKI[O,P,S,E;BS]=
[BS]
(BLOCK+0}<P,S,E>,

BLOCKVECTOR[I,O,P,S,E:N,BS] =
[N=+BS]
(BLOCKVECTOR+0+1+BS)<P,S,E>,

BITVECTORI[I;N] =
[(N+35)/36]
(BITVECTOR+I/36)}<I MOD 36, 1, 0>;

6.4 Linkages and Linkage-Functions

The predeclared linkage-names are:

BLISS-16 BLISS-32 BLISS-36
BLISS BLISS BLISS36C
FORTRAN FORTRAN BLISS10

FORTRAN_FUNC
FORTRAN_SUB

FORTRAN_FUNC
FORTRAN_SUB

FORTRAN_FUNC
FORTRAN_SUB

The default linkage-name for BLISS-16 and BLISS-32 is BLISS; for
BLISS-36 the default linkage-name is BLISS36C.

The following linkage-functions are predefined and can be declared
in a BUILTIN declaration for use in routines that have the CALL or
F10 linkage-type:

ACTUALCOUNT() — No. of actual params. in call
ACTUALPARAMETERI(i) — WValue of ith parameter
ARGPTRI() -— Address of argument block

16,32 NULLPARAMETERIi) — 1if ith param. is nuil;

0 otherwise

37

6.0 PREDECLARED NAMES, Continued

6.5 Supplementary Functions

The supplementary character-handling functions predeclared in
every module are {”“CS"" stands for “character sequence’’):

CH$PTR { addr, i, chsize)
— Create a CS-pointer

CH$PLUS { ptr, i)
— Increment a CS-pointer

CHS$DIFF (ptr1, ptr2)
— Take difference of two CS-pointers

CH$RCHAR (ptr)
— Ferch a character

CH$WCHAR (char, ptr)
— Assign a character

CH$RCHAR_A (addr }
— Fetch a character, then advance CS-pointer

CHSWCHAR_A (char, addr)
— Assign a character, then advance CS-pointer

CH$A _RCHAR (addr)
— Advance CS-pointer, then fetch a character

CH$A _WCHAR (char, addr)
-- Advance CS-pointer, then assign a character

CH$ALLOCATION { n, chsize }
— Storage allocation for given number of characters

CHS$SIZE (ptr)
— Number of bits per character (i.e., returns character
size)

CHSMOVE { n, sptr, dptr)
— Move a character sequence

CHS$COPY (sn1, sptrl, sn2, sptr2 , .. ., fill, dn, dptr)

— Move and concatenate a series of character sequences

CHSFILL { fill, dn, dptr }
— Initialize character sequence with fill character

38

6.0 PREDECLARED NAMES, Continued

CH$LSS (n1, ptr1, n2, ptr2, fill)
~— Compare character sequences for less than

CHSLEQ (n1, ptr1, n2, ptr2, fill)
— Compare character sequences for less than or equal

CHS$GTR (n1, ptr1, n2, ptr2, fill }
— Compare character sequenices for greater than

CH$GEQ (n1, ptr1, n2, ptr2, fill)
— Compare character sequences for greater than or equal

CH$EQL (n1, ptr1, n2, ptr2, fill)
— Compare character sequences for equal

CHSNEQ (n1, ptr1, n2, ptr2, fill)
— Compare character sequences for not equal

CHSCOMPARE (n1, ptr1, n2, ptr2, fill)
— Compare character sequences for less
than, equal to, or greater than. (The
value returned is —1, 0, or 1 respectively.)

CHSFIND_SUB [cn, cptr, pn, pptr)
— Find given subsequence

CH$FIND_CH (n, ptr, char)
— Find given character

CHS$FIND_NOT_CH (n, ptr, char)
— Find first character other than given character

CHSTRANSTABLE (trans-string)
— Create translation table

CHETRANSLATE (tab, sn, sptr, fill, dn, dptr }
— Translate using translation table

CHS$FAIL (ptr)
— Test for failure to satisfy search

39

7.0 MACHINE SPECIFIC NAMES

7.0 MACHINE SPECIFIC NAMES, Continued

The following names may be declared by means of the BUILTIN
declaration:

builtin-name —*
register-name
machine-specific-function
linkage-function

For BLISS-16:

[register-name —*
{ro | R1 | —— | RS | sP | PC}

machine-specific-function =—*
DECX

16 HALT

MFPD | MFPI | MFPS

MTPD | MTPI | MTPS

RESET | ROT

SWAB

WAIT

L lin kage-function — See Section 6.4.
For BLISS-32:

register-name =%

machine-specific-function ==

rADAW! | ASHQ 7
BICPSW | BISPSW | BPT

CALLG | CHME | CHMK | CHMS
CHMU | cMPD | CMPF | CMPP

cRCc | cVTDF | cvTDL | CVTFD
CVTFL | CVTLD | GVTLF | CVTLP

CVTPS | CVTSP | CVTTP

* 4 epiTPc | EDIV | EMUL

FFC | FFS | HALT

INDEX | INSQUE

MFPR | MOVP | MOVPSL | MOVTUC
MTPR | NOP | PROBER | PROBEW
REMQUE | ROT | SCANC | SPANC
TESTBITCC | TESTBITCCI [TESTBITCS

{RO|R1|-—— | R11 | AP | FP | P | PC}

cvTPL | cvTPT | CVTRDL | CVTRFL L

|LTESTBITSC | TESTBITSS | TESTBITSSI J

L linkage-function — See Section 6.4.

40

For BLSS-36:

_register—name -
{AP | FP | sP}

machine-specific-function ™
(ASH)
COPYIl | COPYIN | COPYNI | COPYNN
DPB
36 FIRSTONE
4 INCP

LDB | LSH (
MACHOP | MACHSKIP
POINT
REPLACE! | REPLACEN | ROT
L‘ [SCANI | SCANN

linkage-function — See Section 6.4.

8.0 NAMES RESERVED FOR SPECIAL
PURPOSES

The following names are reserved for future extensions.

For all dialects:

BIT RECORD
IOPAGE SHOW
PRESET

Additional for BL1SS-16:
ALIGN
LONG
WEAK

Additional for BL1SS-36:

ADDRESSING_MODE

ALIGN PSECT
BYTE WEAK
ENABLE WORD
LONG

141

COMMAND SUMMARY 1.0 BLISS-32 COMMANDS, Continued

® One or more object-module files {one per input-spec).
Each object-module file takes its name from the corre-

1.0 BLISS-32 COMMANDS sponding input file name, and the default file-type
: OBJ is appended.

This section describes the VAX/VMS command for invoking a . - -
BLISS-32 compilation, The notational conventions used earlier No listing file is produced.
in this guide are used in this section, with the following additional

. ® Error messages, if any, and a compilation summary are
convention:

reported at the user’s terminal.

@ Thesymbol “+...” denotes an aptional repetition of ; ; .

the immediately preceding item (always a source file- 3. If an input-spec consists of two or more file-specs separated
by plus signs, the specified files are concatenated and proc-
essed as one source module. That is, the specified files are
1.1 Command Line Syntax assumeq to contain,‘coI‘!ectiver, an entire source module.
The object-module file in this case takes its name from the
first source file name specified in the input-spec.

spec), with successive instances separated by “+".

The syntax of the BLISS-32 compilation-request command, given

i Jevel prompt ($) in interactive mode, is: _) _ _ _ i
following 2 command P g 4. If the file type is omitted in an input-file specification, the

L default type B32 is assumed first and then, if necessary, type
compilation-request —e

BLISS {qualifier .. } b inputspec , . . .

I —

{blank | tab} ...

input-spec —e
filespec +... {qualifier}

qualifier =
output-qualifier
general-qualifier
terminal -qualifier
optimization-qualifier
source-list-qualifier
machine-code-list-qualifier

Note: The individual qualifiers are described in
Section 1.2

Usage Rules:

1. Each input-spec given in the command implies a separate
compilation. That is, unless the /NOCODE qualifier is
specified, one object- or library-module file is produced for

each input-spec.

2, If no qualifiers (or corresponding module-head switches) are
specified, the default compilation results are as follows:

42

BLI. (See Sections 1.2 and 1.3 for type defaults for a library
precompilation.)

5. One or more blanks or tabs may be used anywhere that a
space appears in the command-line syntax definitions. {The
only mandatory space is indicated by the symbol “b"" in the
syntax rule.)

1.2 Qualifiers

The default qualifiers and values for interactive-mode compila-
tions are underlined.

Output Qualifiers

output-qualifier —e
JOBJECT { = file-spec } | /NOOBJECT
JLIST {= filespec } | /NOLIST
/LIBRARY {=filespec } | /NOLIBRARY

Usage Rules:

1. The /OBJECT and /LIBRARY qualifiers are mutually exclusive,

i.e., only one of the two may be specified.

2. If the /LIBRARY qualifier is specified, a library-file precom-

pilation is performed (as opposed to an object-module compi-
lation).

43

1.0 BLI1SS-32 COMMANDS, Continued

3. If an output-file type is not specified, the default types are
OBJ, LIS, and L.32, for the obiect, listing, and library file
respectively.

4, |If a file-spec is not given in an output qualifier, the output file
takes the name of the corresponding input file, with the appro-
priate default type (Rule 3).

General Qualifiers
general-qualifier =
/CODE | /NOCODE
/DEBUG | /NODEBUG
JTRACEBACK | /NOTRACEBACK
/VARIANT {=n}
Usage Rules:

1. /NOCODE implies a syntax check only.

2. /DEBUG implies full symbol-table information for the symbolic

debugger.

3. /NOTRACEBACK implies no symbol-table information for the
debugger, and nullifies the effect of /DEBUG, if specified. It
produces the most compact object module and is appropriate
for final production compilations.

4. If /IVARIANT is not specified, a %VARIANT value of O is
assumed. If /VARIANT is specified without a value, a
%VARIANT value of 1 is implied. If a value (n) is specified,
it must be a decimal integer within the value range of a signed
longword.

Terminal Qualifier

terminal-qualifier ——e

ITERMINAL = terminal-value

{ terminal-value , ...)
terminal-value =—s
ERRORS | NOERRORS }
STATISTICS | NOSTATISTICS
Usage Rules:

1. f /TERMINAL. is not specified, the underlined defaults for
terminal-value are assumed,

44

1.0 BLISS-32 COMMANDS, Continued

28

38

If NOERRORS is specified, compilation errors are not reported
at the user’s terminal.

If STATISTICS is specified, the name and size of each routine is
reported as it is compiled.

Optimize Qualifier

optimize-qualifier =
optimize-value

/OPTIMIZE = ..
(optimize-value , .. .)

optimize-value —s
LeveL: {o | 1 [2 [3}
QUICK | NOQUICK
SAFE | NOSAFE
SPACE | SPEED

Usage Rules:

1.

The several optimize-value alternatives affect the compilers
optimization strategies; see the BL/SS-32 User’s Guide for full
details.

. The optimize-values SPEED and SPACE are mutually exclusive.

. QUICK implies the omission of some standard optimizations

in favor of increased compilation speed.

SAFE (a default) implies that all named data-segments are refer-
enced by name only, i.e., not by computed addresses. |If this is
not true for a given module, the NOSAFE alternative should be
specified. -

Source List Qualifier

source-list-qualifier. —»
source-value

/SOURCE_LIST =
(source-value , . ..)

source-value —»

HEADER | NOHEADER
PAGE_SIZE: {20 | 21 |
LIBRARY | NOLIBRARY
REQUIRE | NOREQUIRE
EXPAND_MACROS | NOEXPAND_MACROS
TRACE_MACROS | NOTRACE_MACROS
SOURCE | NOSOURCE

.| 52}

45

1.0 BLISS-32 COMMANDS, Continued

Usage Rules:

1. The several source-value alternatives affect the form and content
of the source portion of the output listing; see the BL/SS-32
User’s Guide for full details.

2. The /LIST output-qualifier (or the corresponding module-head
switch) must be in effect in order for any source-value alterna-
tives to be meaningful.

Machine-Code List Qualifier

machine-code-list-qualifier =
IMACHINE._CODE_LIST =|{ codevalue
(code-value ,...)

code-value —=»

OBJECT | NOOBJECT

ASSEMBLER | NOASSEMBLER

SYMBOLIC | NOSYMBOLIC

BINARY | NOBINARY

COMMENTARY | NOCOMMENTARY

UNIQUE_NAMES | NOUNIQUE_NAMES

Usage Rules:

1. The several code-value alternatives affect the form and content
of the object portion of the output listing; see the 8L /55-32
User’s Guide for full details.,

2. The /LIST output-qualifier {or the corresponding module-head
switch) must be in effect in order for any code-value alternatives

to be meaningful.

3. NOOBJECT is mutually exclusive with any other code-value
alternative.

46

1.0 BLISS-32 COMMANDS, Continued

1.3 Summary of File Type Defaults

The ordered lists of successive type defaults assumed by the com-
piler for various input files, and the type defaults applied by the
compiler for output files, are given below.

Input-File Type Defaults

Source File For: Default Type List

® Object-module compilation .B32, .BLI
® Library-file precompilation .R32, .REQ, .B32, .BLI

File Specified In:
® REQUIRE declarations .R32, .REQ, .B32, BLI
® |IBRARY declarations .L32

Output-File Type Defaults

® Object-module file .0BJ

® Library file .L32

® |isting file .LIS
47

2.0 BLISS-16C AND BLISS-36 COMMANDS

—

The following monitor-level commands invoke the BLISS-:!SC
and BL1SS-36 compilers on a DECsystem-10 with appropriate
BLISS support :

.RBLS16C — for BLISS-16C

.R BLISS — for BLISS-36

(The “.”” represents the monitor-mode prompt character.) The
compiler responds with a “’*"" prompt, requesting a compilation
command line.

2.1 Command Line Syntax

The syntax of a direct-compilation-request command line is:

direct-compilation-request —*
JLc:'utput-file-list }
= source-file-list {switch-item .. }

output-file-list —*
object-filespec listing-filespec
library-filespec,listing-filespec
object-filespec
library-filespec
Llisting-filespec

source-file-list =
source-filespec , . . .

Note: The switch-items applicable to each compiler are
described separately below.

Usage Rules:

1. If the /[LIBRARY switch is specified in the command line, then
a library-file specification is applicable in the output—file Iist‘
(and a library-file extension default will be assumgd, if qne is
required}. Otherwise, an object-file specification is applicable.

2. |f either one or both of the output filespecs (object/library or
listing) are omitted, the corresponding output file(s) are not
produced.

48

2.0 BLISS-16C AND BLISS-36 COMMANDS,
Continued

3. If more than one source file is specified, these files will be
logically concatenated by the compiler and treated as ane
source file. Program modules need not be terminated at file
boundaries, and may consist of more than one source file.

4. If incomplete file specifications are given, standard TOPS-10
defaults will be applied to the missing portions (such as device
name, project-programmer number, and/or protection code) as
appropriate.

5. If file extensions are omitted for one or more files, default
extensions will be assumed according to the rules given below
for each compiler.

6. Default switch settings are assumed as described below for each
compiler.

Exception for BLISS-16C: If only one output-file is specified
(in either the object or listing position) and /LIBRARY is not
specified, the file is taken to be a file for subsequent assembler
input and will have the default extension .P11.

The syntax of an indirect-compilation-request command line is:
@ indirect-filespec

where indirect-filespec specifies a file containing one or more
direct or indirect command lines. (In the case of BLISS-1 6C,
only the direct compilation request encountered first is
processed.)

File Extension Defaults for BLISS-16C
File Default Extensions
Source file for

object compilation
Saource file for

.B16, .BLI, then null

R16, .REQ, .B16,

library compilation BLI, then null
Object file . .0BJ
Library file .L16
Listing file .LST
Indirect file .CMD

49

20 BLISS-16C AND BLISS-36 COMMANDS, 2.0 BLISS-16C AND BLISS-36 COMMANDS,
Continued Conti
ontinued

File Extension Defaults for BL1SS-36
list-option —*

File Default Extensions 'C_OMMENTARY | NOCOMMENTARY |
EXPAND | NOEXPAND
Source file for _B36, then .BLI LIBRARY | NOLIBRARY
object compilation OBJECT | NOOBJECT
Source file for 'R36, .REQ, .B36, | RECLIRE | NOREQUIRE
library compilation then .BLI SOURCE | NOSOURCE r
Obiject file REL SYMBOLIC | NOSYMBOLIC
Library file L36 TRACE | NOTRACE
Listing file ST ;m[ASSEMBLY | NOASSEMBLY
indirect file CMD (BINARY | NOBINARY)
16[mode-16-option —*
2.2 Command Switches {ABSOLUTE | RELATIVE }

The command switches are presented below in the format used
previously for language syntax. Default switch settings, where
applicable, are underlined. The three categories of command
switches are the on-off-switches, the special switches {which are
either the same as or very similar to the corresponding module-
switches: see Section 1.1}, and the command-line-only switches.

16 | object-option =%
{ ABSOLUTE | RELOCATABLE }

Switches in any of these categories can be given in any order. Command-Line-Only Switches
On-Off-Switches Commrﬂndf'iﬂeﬂnlv-switch —_
/LIBRARY | /NOLIBRARY 3
on-off-switch = /PAGESIZ:n
/CODE | /NOCODE /STATISTICS | /NOSTATISTICS
/DEBUG | /NODEBUG [VARIANT:n
/ERRS | /NOERRS . /BLISS11:"bliss-11-switches”

/OPTIMIZE | /NOOPTIMIZE /COMPRESS | /NOCOMPRESS

/SAFE | /INOSAFE [HEADER | /NOHEADER 3
JUNAMES | /NOUNAMES m[/IDELETE | /NOIDELETE

&
A

[ZIP | INOZIP /INTER:intermediate-filespec
KA10 | K10 | KL10

_ . /QUICK | /NOQUICK

Special-Switches 16 /RBLISS11 | /NORBLISS11

36 kTC‘PS1O | TOPS20

special-switch —*
JLIST: {Hst-option | {list-option, ...} }
15:-5" /ADDRESS: mode-16-option
L JOBJECT: object-option
JOPTLEVEL: opt-level-option

B0 51

2.0 BLISS-16C AND BLISS-36 COMMARMDS,
Continued

Note: (1) The range of /PAGESIZ:n is 20 through 52,
inclusive; the default value is 52.

(2) Ifno /VARIANT switch is given, the value of
%VARIANT isset to 0. If /VARIANT is given
without an “:n’" argument, the value of %VARIANT
isset to 1. [fnisspecified, it must be a decimal
integer within the range of a BLISS value for the
compiler in question, that is, —(2x«%BPVAL 1)

w=n < (2x+%BPVAL- 1)-1.

52

