
Chapter 4

Curried and Higher Order
Functions

Chapter 2 has shown that functions are values in themselves and can be treated
as data items (see Section 2.2). This chapter shows that functions may in fact
be passed as parameters to other functions; a function that either takes another
function as an argument or produces a function as a result is known as a higher
order function.

Two further concepts are introduced in this chapter: currying and function
composition. Currying (named in honour of the mathematician Haskell Curry)
enables functions to be defined with multiple parameters without the need to use a
tuple. A curried function also has the property that it does not have to be applied
to all of its parameters at once; it can be partially applied to form a new function
which may then be passed as a parameter to a higher order function. Function
composition is used to chain together functions (which may themselves be partial
applications) to form a new function.

Several powerful “families” of higher order functions on lists are shown; these
functions can be combined and composed together to create new higher order func-
tions. Higher order functions may be used to avoid the use of explicit recursion,
thereby producing programs which are shorter, easier to read and easier to main-
tain.

4.1 Currying

It is sometimes tedious to use tuple notation to deal with functions that require
more than one parameter. An alternative way of writing the function definition
and application is to omit the tuple notation as shown in the definition for get nth

(which selects the nth item from a list, and is similar to the built-in ! operator):1

1Note that the brackets around (front : any) are not tuple brackets but part of the list
construction and must not be removed.

109

110 Curried and Higher Order Functions

get nth any [] = error "get nth"

get nth 1 (front : any) = front

get nth n (front : rest) = get nth (n - 1) rest

The type indication is new:

Miranda get_nth ::

num->[*]->*

This is different from previous responses for function definition, which had a single
arrow in the type. In the curried definition shown above, there are two arrows
which implies that two functions have been defined. These type arrows always
associate to the right,2 so that an equivalent type response is:

num->([*]->*)

This illustrates that get nth is a function which has a number source type and gen-
erates an intermediate result which is itself a function; this second, but anonymous,
function translates a polytype list into a polytype.

The presence of multiple arrows in the type indicates that get nth is a curried
function. This curried version of get nth may now be applied to two arguments,
without using tuple brackets, giving the desired result:

Miranda get_nth 2 ["a","bb","ccc"]

bb

In practice, any uncurried function could have been defined in a curried manner,
regardless of the number of components in its argument. From now on most func-
tions will be presented in a curried form.

4.1.1 Partially applied functions

Although currying allows a simpler syntax, its real advantage is that it provides
the facility to define functions that can be partially applied. This is useful because
it enables the creation of new functions as specializations of existing functions. For
instance, the function get nth may be used with just one argument to give rise to
new functions:

get second = get nth 2

get fifth = get nth 5

Miranda get_second ::

[*]->*

2Remember that function application associates to the left.

Currying 111

Miranda get_fifth ::

[*]->*

Miranda get_second ["a","bb","ccc"]

bb

A hand evaluation of the above application of get second shows:

get_second ["a","bb","c"]

==> (get_nth 2) ["a","bb","ccc"]

==> get_nth 2 ["a","bb","ccc"]

==> get_nth 1 ["bb","ccc"]

==> "bb"

The partial application of (get nth 2) thus generates an intermediate function,
waiting for application to a final argument in order to generate a result. A partial
application may also be used as an actual parameter to another function; the
expressive power of this feature will become evident later in this chapter during
the discussion of higher order functions.

4.1.2 Partially applied operators

The Miranda arithmetic and relational operators all have an underlying infix for-
mat. This means that they cannot be partially applied. For example, both of the
following definitions will fail:

wrong inc = 1 +

wrong inc = + 1

It is, of course, possible to define simple, prefix, curried functions which do the
same as their operator equivalents and can then be partially applied:

plus :: num -> num -> num

plus x y = x + y

inc = plus 1

As there are not many operators, this approach provides a brief, simple and prag-
matic solution. An alternative approach is to use the Miranda operator section
mechanism. With this approach any dyadic operator (that is, an operator taking
two arguments) may be used in a prefix, curried manner by surrounding it with
brackets.

112 Curried and Higher Order Functions

For example, the following two expressions are equivalent:

1 + 2

(+) 1 2

The latter demonstrates firstly, that the syntactic form (+) is a prefix function and
secondly, that it takes its two distinct arguments and hence is curried.

The following definitions further demonstrate the power of the bracketing nota-
tion:

inc = (+) 1

twice = (*) 2

The unrestricted use of operator sections can sometimes lead to cluttered code,
and so it may be preferable to provide names for prefix, curried versions of the
operators. Using these names will lead to code that is longer, but more compre-
hensible. The following definitions provide suggested names which may be used
(where appropriate) in subsequent examples throughout the book:

plus = (+)

minus = (-)

times = (*)

divide = (/)

both = (&)

either = (\/)

append = (++)

cons = (:)

equal = (=)

notequal = (~=)

isitgreaterthan = (<)

greaterthan = (>)

isitlessthan = (>)

lessthan = (<)

Notice that number comparison has two variants, for example isitlessthan and
lessthan.3 These two functions are quite different:

1. isitlessthan is normally used in a partially applied manner to provide a
predicate, for example:

3The following discussion applies equally to the functions isitgreaterthan and greaterthan.

Simple higher order functions 113

is negative :: num -> bool

is negative = isitlessthan 0

Miranda is_negative (-1)

True

2. lessthan is normally used as a prefix replacement for the infix operator <:

Miranda lessthan 0 (-1)

False

The partial application (lessthan 0) is interpreted as “is 0 less than some
integer?”.

This kind of distinction applies to all non-commutative operators.

In general, Miranda allows both presections (for example, (1+)) and postsections
(for example, (+1)). There is one important exception: it is not possible to define
a postsection for the subtraction operator. This is because (-1) already has a
special meaning—minus one!

4.2 Simple higher order functions

Higher order functions are a powerful extension to the function concept and are
as easy to define and use as any other function. The rest of this section shows
a number of simple higher order functions whilst the next section extends the
principle to higher order functions over lists.

4.2.1 Function composition

The built-in operator . (pronounced “compose”) is different to previously shown
built-in operators in that it takes two functions as its parameters (and hence is also
a higher order function). A frequent programming practice is to apply a function to
the result of another function application. For instance, using the function twice

(defined in the previous section):

quad x = twice (twice x)

many x = twice (twice (twice (twice x)))

In this sort of function definition, the use of bracket pairs is tedious and can lead
to errors if a bracket is either misplaced or forgotten. The operator . enables most
of the brackets to be replaced:

114 Curried and Higher Order Functions

quad x = (twice . twice) x

many x = (twice . twice . twice . twice) x

Not only is this notation easier to read but it also emphasizes the way the functions
are combined. The outermost brackets are still necessary because . has a lower
precedence than function application. The compose operator is specified by (f . g) x
= f (g x), where the source type of the function f must be the same as the result
type of the function g.

Function composition provides a further advantage beyond mere “syntactic sug-
aring”, in that it allows two functions to be combined and treated as a single
function. As shown in Chapter 1, the following intuitive attempt at naming many

fails because twice expects a number argument rather than a function translating
a number to a number:

wrong many = twice twice twice twice

type error in definition of wrong_many

cannot unify num->num with num

The correct version uses function composition:

many :: num -> num

many = twice . twice . twice . twice

Miranda many 3

48

The use of . is not limited to combining several instances of the same function
(which itself must have identical source and target types); it can be used to combine
any pair of functions that satisfy the specification given above. For example:

sqrt many = sqrt . many

sqrt dbl = sqrt . (plus 1) . twice

Note that in the final example (plus 1) is a monadic function (it takes just one
parameter); the use of plus on its own is inappropriate for composition because it
is dyadic.

Composing operators

If an operator is to be used in a function composition then it must be used in its
sectional form. For example:

Simple higher order functions 115

Miranda ((+ 2) . (* 3)) 3

11

This rule also applies to ~ and #, which must be treated as prefix operators rather
than functions:

Miranda ((~) . (< 3)) 4

True

Miranda ((#) . tl) [1,2,3]

2

Exercise 4.1

Give the types of the following compositions:

tl . (++ [])

abs . fst

code . code

show . tl

4.2.2 Combinatorial functions

The following functions are similar to . in that they facilitate the use of higher
order functions. These functions are known as combinators (Diller, 1988; Field
and Harrison, 1988; Revesz, 1988; Turner, 1979) and, traditionally, are given single
upper case letter names (which is not possible under Miranda naming rules). This
text only introduces versions of the combinators B, C and K, which are of general
utility. There are many more possible combinators which have mainly theoretical
interest and serve as the basis for many implementations of functional languages.
For more information the reader is referred to the Bibliography.

Compose

The B combinator is the prefix equivalent of . and is defined below as the function
“compose”:

compose = (.) || B combinator

The function compose can now be used in a similar way and with the same advan-
tages as its built-in equivalent.

116 Curried and Higher Order Functions

Swap

The C combinator is known as “swap” and serves to exchange the arguments of a
(curried) dyadic function:

swap ff x y = ff y x || C combinator

Note that the Miranda Standard Environment provides the function converse,
which has the same functionality.

Cancel

The K combinator is known as “cancel” because it always discards the second of
its two arguments and returns its first argument:

cancel x y = x || K combinator

Note that the Miranda Standard Environment provides the function const, which
has the same functionality as cancel.

Exercise 4.2

Theoreticians claim that all of the combinators (and consequently all functions) can
be written in terms of the combinator K (cancel) and the following combinator S

(distribute):

distribute f g x = f x (g x)

Define the combinator identity (which returns its argument unaltered) using only the
functions distribute and cancel in the function body. Provide a similar definition for
a curried version of snd.

4.2.3 Converting uncurried functions to curried form

The user-defined functions presented in the first three chapters of this book have
been defined in an uncurried format. This is a sensible format when the functions
are intended to be used with all of their arguments, but it is not as flexible as
the curried format. If curried versions are required then it would be possible to
rewrite each function using curried notation; however, this would involve a lot of
programmer effort (and consequently would be prone to programmer error). A
more pragmatic approach is to write a function that will generate curried versions
of uncurried functions—this function could be written once, then used as and when
necessary.

Simple higher order functions 117

This section presents a function, make curried, which will convert any uncur-
ried, dyadic function (that is, a function which takes a tuple with two components)
to curried format. The programmer can then use this function as a template for
further conversion functions as required.

The conversion function make curried is itself in curried form and takes three
parameters. The first parameter represents the uncurried function and the next
two parameters represent that function’s arguments. All that the function body
needs to do is apply the input function to these last two parameters collected into
a tuple (since an uncurried function only works on a single argument):

make curried :: ((*,**) -> ***) -> * -> ** -> ***

make curried ff x y = ff (x,y)

Now, given the definition:

maxnum :: (num,num)->num

maxnum (x, y) = x, if x > y

= y, otherwise

then clearly the application maxnum 1 2 will fail, as the function maxnum expects
a number pair. Using make curried gets around this problem:4

make_curried maxnum 2 3

==> maxnum (2, 3)

==> 3

Similarly, new curried versions of existing functions can be created with the mini-
mum of programmer effort:

newmaxnum = make curried maxnum

The function make curried is another example of a higher order function because
it expects a function as one of its parameters. In general, any function that takes
a function as at least one of its parameters or returns a function, as its result is
known as a higher order function.

Exercise 4.3

Explain why make curried cannot be generalized to work for functions with an arbi-
trary number of tuple components.
Exercise 4.4

Write the function make uncurried which will allow a curried, dyadic function to
accept a tuple as its argument.

4This is an excellent example of the fact that function application associates from the left, to
give ((make curried maxnum) 2) 3 rather than make curried (maxnum (2 3)) which would
be an error.

118 Curried and Higher Order Functions

Exercise 4.5

The built-in function fst can be written using make uncurried and the cancel com-
binator:

myfst = make_uncurried cancel

Provide a similar definition for the built-in function snd.

4.2.4 Iteration

An important advantage of the functional approach is that the programmer can
create a rich set of iterative control structures and hence be more likely to choose
one which represents the problem specification. This subsection illustrates this
point in the definition of a “repeat” loop construct. This function is not similar
to the repeat function available in the Miranda Standard Environment—it is,
however, similar to the iterate function.5

The following (non-robust) function repeatedly applies its second parameter to
its final parameter, which serves as an accumulator for the final result. The pa-
rameter of recursion is n which converges towards zero:

myiterate :: num -> (* -> *) -> * -> *

myiterate 0 ff state = state

myiterate n ff state = myiterate (n-1) ff (ff state)

The function myiterate can be used to give a non-recursive definition of any
function that bases its recursion on a fixed number of iterations. For example, the
function printdots (from Chapter 2) may be defined as:

printdots n = myiterate n ((++) ".") ""

In printdots the empty string "" is the initial value of the state parameter
(or accumulator), which changes at each recursive step. A hand evaluation of
(printdots 2) reveals:

printdots 2

==> myiterate 2 ((++) ".") ""

==> myiterate 1 ((++) ".") (((++) ".") "")

==> myiterate 1 ((++) ".") ("." ++ "")

==> myiterate 1 ((++) ".") (".")

==> myiterate 0 ((++) ".") (((++) ".") ".")

==> myiterate 0 ((++) ".") ("." ++ ".")

==> myiterate 0 ((++) ".") ("..")

==> ".."

5The function could alternatively be defined as myiterate n ff state = (iterate ff

state) ! n.

Higher order functions on lists 119

If the function to be repeated also requires the iteration count as a parameter, the
following variant myiterate c may be used (assuming the iteration counter counts
down towards zero):

myiterate c :: num -> (* -> num -> *) -> * -> *

myiterate c 0 ff state = state

myiterate c n ff state

= myiterate c (n - 1) ff (ff state n)

Exercise 4.6

Explain why myiterate is non-robust and provide a robust version.

Exercise 4.7

Imperative programming languages generally have a general-purpose iterative control
structure known as a “while” loop. This construct will repeatedly apply a function to
a variable whilst the variable satisfies some predefined condition. Define an equivalent
function in Miranda.

4.3 Higher order functions on lists

Many of the list-handling functions presented in Chapter 3 exhibit similar forms
of recursion but use different operations to achieve their results. Miranda provides
the facility to generalize these functions and removes the need to program with
explicit recursion.

This section shows three families of curried, polymorphic, higher order functions
on lists:

1. The “map” family, which retains the list structure but transforms the list
items.

2. The “fold” family, which distributes an operator over a list, typically to
produce a single value result.

3. The “select” family, which retains the list structure but may delete items
from the list, according to a given predicate.

4.3.1 The map family

It is often useful to apply a function to each item in a list, returning a list of the
consequences. For example, map inc will apply inc to each item in a given number
list and map twice will apply twice to each item in a given number list:

120 Curried and Higher Order Functions

inc = (+ 1)

twice = (* 2)

map inc [] = []

map inc (front : rest) = (inc front) : (map inc rest)

map twice [] = []

map twice (front : rest) = (twice front) : (map twice rest)

A template for any function of this form is:
map ff [] = []

map ff (front : rest) = (ff front) : (map ff rest)
It can be seen from this template that the only important difference between
map inc and map twice is the name of the function that is applied to the front

item (represented by ff in the template). Rather than having to define functions
of this form using explicit recursion, it is possible to define them using the built-in
higher order function map. This function has ff as its first argument and the list
to be transformed as its second argument:

Miranda map inc [1,3,2,6]

[2,4,3,7]

Figure 4.1 The behaviour of the function map.

The behaviour of the function map is further illustrated in Figure 4.1 and the
following examples:

Higher order functions on lists 121

Miranda map (+ 1) [1,2,3]

[2,3,4]

Miranda map (twice . inc) [1,2,3]

[4,6,8]

Miranda map (plus 2) [1,2,3]

[3,4,5]

list inc = map inc

Miranda list_inc ::

[num] -> [num]

Miranda list_inc [1,2,3]

[2,3,4]

It is important to note that (map inc) is a partially applied function (where inc

is a function argument to map) and is not a function composition:

Miranda (map inc) ::

[num] ->[num]

Miranda (map . inc) ::

cannot unify num->num with num->*->**

Furthermore, as in all other situations, the arguments to and the results produced
by map are evaluated lazily:

Miranda map (+ 1) [1,2,3]

[2,3,4]

Miranda map (/ 0) [1,2,3]

[

program error: attempt to divide by zero

Miranda fst (3, map (/ 0) [1,2,3])

3

Miranda (hd.tl) (map (3 /) [1,0,3])

program error: attempt to divide by zero

Miranda hd (map (3 /) [1,0,3])

3.0

122 Curried and Higher Order Functions

Designing map

In fact, map is very easy to write. All that is necessary is to generalize from the
map ff template by passing ff as an additional argument:

map ff [] = []

map ff (front : rest) = (ff front) : (map ff rest)

The function map is polymorphic, as can be seen from its type:

Miranda map ::

(*->**)->[*]->[**]

The function can transform a list of any type provided that the source type of ff
matches the type of the items in the list.

Mapping over two lists

The principle of list transformation using map can be extended to cater for more
than one list. For example, the following function takes two lists and recursively
applies a dyadic function to the corresponding front items:

map two :: (*->*->**)->[*]->[*]->[**]

map two ff [] [] = []

map two ff (front1 : rest1) (front2 : rest2)

= (ff front1 front2) : (map two ff rest1 rest2)

map two ff any1 any2

= error "map two: lists of unequal length"

Miranda map_two (make_curried max) [1,2,3] [3,2,1]

[3,2,3]

Exercise 4.8

In the definition of map two, source lists of unequal length have been treated as an error.
It is an equally valid design decision to truncate the longer list; amend the definition to
meet this revised specification.

Exercise 4.9

Write a function applylist which takes a list of functions (each of type *->**) and
an item (of type *) and returns a list of the results of applying each function to the item.
For example: applylist [(+ 10),(* 3)] 2 will evaluate to [12,6].

Higher order functions on lists 123

Exercise 4.10

Explain why the following definitions are equivalent:

f1 x alist = map (plus x) alist

f2 x = map (plus x)

f3 = (map . plus)

4.3.2 List folding—reduce and accumulate

This subsection discusses how a dyadic function can be distributed so that it works
over a list, typically evaluating to a single value, for example to give the sum of
all the numbers in a list. As with the discussion of map, it will be shown how
explicit recursion can be removed by means of a single higher order function. Two
strategies are used:

1. Stack recursion, to define a function called reduce (known in the Miranda
Standard Environment as foldr).

2. Accumulative recursion, to define a function called accumulate (known in
the Miranda Standard Environment as foldl).

The higher order function reduce

On inspecting the structure of the following definitions of sumlist, divall and
anytrue, it can be seen that they share a common structure:

sumlist [] = 0

sumlist (front : rest) = front + (sumlist rest)

divall [] = 1.0

divall (front : rest) = front / (divall rest)

anytrue [] = False

anytrue (front : rest) = front \/ (anytrue rest)

Functions of this form place the dyadic operator between each of the list items and
substitute a terminating value for the empty list. For example, the sum of the list
[1,2,5,2] may be thought of as the result of 1 + 2 + 5 + 2 + 0. Generalizing gives
the template:

reduce ff [] = default
reduce ff (front : rest) = (ff front) ⊕ (reduce ff rest)

124 Curried and Higher Order Functions

This template is appropriate for all dyadic infix functions ⊕. In the above examples,
the default value has been chosen such that the following specification holds:

any ⊕ default = any

When the default value has this property, it is formally known as the Identity
element of the dyadic function:

Table 4.1 Identity elements of common dyadic functions.

any ⊕ Identity = any
any int + 0 = any num

any bool \/ False = any bool

any string ++ "" = any string

any list ++ [] = any list

Notice it is not always necessary to choose the identity as the default. For example:

product times ten [] = 10

product times ten (front : rest)

= front * (product times ten rest)

Furthermore, many dyadic functions do not have an identity and so great care must
be taken in the choice of a sensible default value. For example, it is not obvious
what would be a sensible default value for the operator mod.

Miranda provides a built-in higher order function called foldr to generalize
reduce ff. However, a user-defined version (here called reduce) can also be written,
using a similar approach to that taken with the design of map.

Designing reduce

The above examples considered the distribution of built-in infix operators over
lists. However, reduce will be designed to accept prefix functions, mainly because
user-defined functions are normally defined in prefix form. The design proceeds by
replacing ⊕ with a prefix version ff in the template:

reduce ff [] = default
reduce ff (front : rest) = (ff front) (reduce ff rest)

All that is now necessary is to make ff and default become explicit arguments:

reduce :: (* -> ** -> **) -> ** -> [*] -> **

reduce ff default [] = default

reduce ff default (front : rest)

= ff front (reduce ff default rest)

Higher order functions on lists 125

Examples of partial applications which use reduce are now presented (employing
the curried functions defined in Section 4.1.2):

anytrue = reduce either False

sumlist = reduce plus 0

divall = reduce divide 1.0

product times ten = reduce times 10

Miranda reduce plus 0 [1,2,3]

6

Miranda sumlist [1,3,5]

9

A hand evaluation of the last application shows:

sumlist [1,3,5]

==> reduce (+) 0 [1,3,5]

==> (+) 1 (reduce (+) 0 [3,5])

==> (+) 1 ((+) 3 (reduce (+) 0 [5]))

==> (+) 1 ((+) 3 ((+) 5 (reduce (+) 0 [])))

==> (+) 1 ((+) 3 ((+) 5 0))

==> (+) 1 ((+) 3 5)

==> (+) 1 8

==> 9

The function reduce is stack recursive, in that it stacks a growing unevaluated
expression until the empty list is encountered. At this point it unstacks from
the innermost right to the outermost left, combining them pairwise by means of
application of the function parameter ff. In the unstacking phase, this can be seen
as “folding” the list from the right, usually into a single value; hence the alternative
name, foldr, which is used by the equivalent Miranda Standard Environment
function.

The function reduce is not restricted to a single value result; it can also return
an aggregate type, as illustrated in the following example:

do nothing :: [*] -> [*]

do nothing = reduce (:) []

Miranda do_nothing [1,5,8]

[1,5,8]

A hand evaluation shows how this works:

126 Curried and Higher Order Functions

do_nothing [1,5,8]

==> reduce (:) [] [1,5,8]

==> (:) 1 (reduce (:) [] [5,8])

==> (:) 1 ((:) 5 (reduce (:) [] [8]))

==> (:) 1 ((:) 5 ((:) 8 (reduce (:) [] [])))

==> (:) 1 ((:) 5 ((:) 8 []))

==> (:) 1 ((:) 5 [8])

==> (:) 1 [5,8]

==> [1,5,8]

The overall result is an aggregate type because the dyadic function being dis-
tributed (in this case (:)) returns an aggregate type. Notice that the target type
of the function being distributed must be the same as the source type of its second
argument (that is, it must have type * -> ** -> **). Also notice that (:) has no
identity—however, [] was chosen as the sensible default value because it produces
a list as required.

It is also possible to use reduce to distribute partial applications and function
compositions across lists, as demonstrated below:

addup greaterthan :: num -> num -> num -> num

addup greaterthan x y z = y + z, if x < y

= z, otherwise

Miranda reduce (addup_greaterthan 3) 0 [1,7,3,9,8,4,1]

28

Miranda reduce ((:) . inc) [] [1,2,3]

[2,3,4] : int list

The final example above is particularly interesting as it has the same action as
map inc [1,2,3]. A hand evaluation shows how it works:

reduce ((:) . inc) [] [1,2,3]

==> ((:) . inc) 1 (reduce ((:) . inc) [] [2,3])

==> (:) (inc 1) (reduce ((:) . inc) [] [2,3])

==> (:) 2 (reduce ((:) . inc) [] [2,3])

==> (:) 2 (((:) . inc) 2 (reduce ((:) . inc) [] [3]))

==> (:) 2 ((:) (inc 2) (reduce ((:) . inc) [] [3]))

==> (:) 2 ((:) 3 (reduce ((:) . inc) [] [3]))

==> (:) 2 ((:) 3 (((:) . inc) 3 (reduce ((:) . inc) [] [])))

==> (:) 2 ((:) 3 ((:) (inc 3) (reduce ((:) . inc) [] [])))

==> (:) 2 ((:) 3 ((:) 4 (reduce ((:) . inc) [] [])))

==> (:) 2 ((:) 3 ((:) 4 []))

==> (:) 2 ((:) 3 [4])

==> (:) 2 [3,4]

==> [2,3,4]

Higher order functions on lists 127

Exercise 4.11

Rewrite the function map in terms of reduce.

The higher order function accumulate

It is possible to define a very similar function to reduce that makes use of the
accumulative style of recursion. Miranda provides the built-in higher order function
foldl, which starts evaluating immediately by recursing on the tail of the list with
the default value being used as the accumulator. A user-defined version called
accumulate is given below:

accumulate :: (*->**->*) -> * -> [**] -> *

accumulate ff default [] = default

accumulate ff default (front : rest)

= accumulate ff (ff default front) rest

Equivalence of reduce and accumulate

On many occasions reduce can be substituted with accumulate, as shown in the
next three examples which rework the previous reduce examples. However, this
is not always the case, as will be demonstrated in the subsequent treatment for
reverse.

anytrue = accumulate either False

sumlist = accumulate plus 0

product times ten = accumulate times 10

A hand evaluation of sumlist [1,3,5] reveals that the same answer is obtained
as for the reduce version, but in a very different manner:

sumlist [1,3,5]

==> accumulate (+) 0 [1,3,5]

==> accumulate (+) ((+) 0 1) [3,5]

==> accumulate (+) ((+) ((+) 0 1) 3) [5]

==> accumulate (+) ((+) ((+) ((+) 0 1) 3) 5) []

==> ((+) ((+) ((+) 0 1) 3) 5)

==> ((+) ((+) 1 3) 5)

==> ((+) 4 5)

==> 9

128 Curried and Higher Order Functions

By contrast, it is not possible to substitute accumulate for reduce in the divall

example, nor reduce for accumulate in the following definition of myreverse:

myreverse = accumulate (swap (:)) []

Note that the above user-defined version is directly equivalent to the definition of
the built-in function reverse, as presented in Section 28 of the Miranda on-line
manual:

reverse = foldl (converse (:)) []

Comparing reduce and accumulate

The reason why reduce cannot be substituted for accumulate in the above defini-
tion of reverse is best illustrated through a diagrammatic comparison of the two
functions. The following example compares the distribution of the infix + operator
across the list [1,2,3], with a default value of 0. If the reduce function is used
then this may be considered diagrammatically as placing the default value at the
right-hand end of the list and bracketing the expression from the right (hence the
alternative name foldr):

1 : 2 : 3 : []
↓ ↓ ↓
1 + (2 + (3 + 0))

By contrast, if the accumulate function is used then this may be considered dia-
grammatically to place the default value at the left-hand end and bracketing the
expression from the left (hence the alternative name foldl):

1 : 2 : 3 : []
↓ ↓ ↓

((0 + 1) + 2) + 3

Of course, reduce and accumulate are defined to take curried, prefix functions
rather than infix operators and so the actual diagrams would be slightly more
complex. For example, (reduce (+) 0 [1,2,3]) would produce ((+) 1 ((+) 2

((+) 3 0))) and (accumulate (+) 0 [1,2,3]) would produce ((+) ((+) ((+)

0 1) 2) 3). However, the above two diagrams provide a better visual mnemonic.
In general, it is only safe to substitute one of the fold functions with the other

if the function parameter ff is associative and also commutative (at least with
its identity). As explained in Chapter 1, an infix operator ⊕ is associative if the
following holds for all possible values of x, y and z:

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z

Higher order functions on lists 129

Similarly, a prefix function ff is associative if the following holds for all possible
values of x, y and z:

ff x (ff y z) = ff (ff x y) z

A prefix function is commutative with its identity value if the following holds for
all possible values of x:

ff Identity x = ff x Identity

It can now be seen that substituting reduce for accumulate in the definition of
reverse will fail because both of the two conditions given above are violated. The
function (swap (:)) is neither associative nor does it have an identity value.

The relevance of these two criteria can also be illustrated diagrammatically. By
using the two rules of associativity and commutativity with the identity, and by
reference to the diagrams used above, it is possible to transform the diagram for
reduce (+) 0 [1,2,3] into the diagram for accumulate (+) 0 [1,2,3] (once
again infix form is used in the diagram for clarity):

1 + (2 + (3 + 0))
by rule 1 = (1 + 2) + (3 + 0)
by rule 1 = ((1 + 2) + 3) + 0
by rule 2 = 0 + ((1 + 2) + 3)
by rule 1 = (0 + (1 + 2))+ 3
by rule 1 = ((0 + 1)+ 2) + 3

Exercise 4.12

Some functions cannot be generalized over lists, as they have no obvious default value
for the empty list; for example, it does not make sense to take the maximum value of an
empty list. Write the function reduce1 to cater for functions that require at least one
list item.
Exercise 4.13

Write two curried versions of mymember (as specified in Chapter 3.6), using reduce

and accumulate, respectively, and discuss their types and differences.

4.3.3 List selection

There are a large number of possible list selection functions, which remove items
from a list if they do not satisfy a given predicate (that is, a function that translates
its argument to a Boolean value). This subsection presents two functions which
are typical of this family of functions.

130 Curried and Higher Order Functions

List truncation

The following function takes a list and a predicate as arguments and returns the
initial sublist of the list whose members all satisfy the predicate:

mytakewhile :: (* -> bool) -> [*] -> [*]

mytakewhile pred [] = []

mytakewhile pred (front : rest)

= front : (mytakewhile pred rest), if pred front

= [], otherwise

Example:

Miranda mytakewhile (notequal ’ ’) "how_long is a string"

how_long

This function behaves in the same manner as the Miranda Standard Environment
takewhile function.

List filter

The next example is the function myfilter which uses a predicate that is based
on the item’s value. This function may be specified in terms of filter recursion, as
shown in Section 3.8:

myfilter :: (* -> bool) -> [*] -> [*]

myfilter pred [] = []

myfilter pred (front : rest)

= front : (myfilter pred rest), if pred front

= myfilter pred rest, otherwise

Examples:

Miranda myfilter (isitlessthan 3) [1,7,2,9,67,3]

[1,2]

rm dups :: [*] -> [*]

rm dups [] = []

rm dups (front : rest)

= front : (rm dups (myfilter (notequal front) rest))

This function behaves in the same manner as the Miranda Standard Environment
filter function.

Program design with higher order functions 131

Grep revisited

Using filter, the grep program shown in Section 3.9 can now be extended to
mirror the UNIX grep behaviour, so that only those lines which match the regular
expression are printed from an input stream. It should be noted that the code is
presented in curried and partially applied form and assumes that sublist is also
curried:

string == [char]

grep :: string -> [string] -> [string]

grep regexp = filter (xgrep regexp)

xgrep :: string -> string -> bool

xgrep regexp line = sublist (lex regexp) line

Exercise 4.14

Define the function mydropwhile which takes a list and a predicate as arguments and
returns the list without the initial sublist of members which satisfy the predicate.
Exercise 4.15

The set data structure may be considered as an unordered list of unique items. Using
the built-in functions filter and member, the following function will yield a list of all
the items common to two sets:

intersection :: [*] -> [*] -> [*]

intersection aset bset = filter (member aset) bset

Write a function union to create a set of all the items in two sets.

4.4 Program design with higher order functions

This section shows how programming with higher order functions leads to more
general purpose programs. Higher order functions eliminate explicit recursion and
so lead to programs that are more concise and often nearer to the natural specifi-
cation of a problem.

4.4.1 Making functions more flexible

Many functions can be made more general by substituting explicit predicate func-
tions with a parameter; the decision as to which predicate is actually employed is

132 Curried and Higher Order Functions

thereby deferred until the function is applied. In the following example, insertion
sort (presented in Section 3.7.3) is generalized so that it will sort a list of any type
in either ascending or descending order. The only alteration that is required to the
original specification is to substitute a comparison function in place of the infix <

operator for insert and isort. The following code reworks the example presented
in Section 3.7.3 in curried form:

ordertype * == * -> * -> bool

isort :: ordertype * -> [*] -> [*]

isort order anylist

= xsort order anylist []

xsort :: ordertype * -> [*] -> [*] -> [*]

xsort order [] sortedlist

= sortedlist

xsort order (front : rest) sortedlist

= xsort order rest (insert order front sortedlist)

insert :: ordertype * -> * -> [*] -> [*]

insert order item []

= [item]

insert order item (front : rest)

= item : front : rest, if order item front

= front : (insert order item rest), otherwise

The extra parameter order provides the comparison function, whilst also dictating
the type of the list. In this manner, the functionality of isort has been increased
significantly since a different order can be slotted in place by a simple partial
application:

desc sort :: [*] -> [*]

desc sort = isort greaterthan

stringsort :: [char] -> [char]

stringsort = isort lessthan

Notice that the type declaration allows the overloaded relational operators to be
truly polymorphic (as with desc sort) or forces them to be monomorphic (as with
stringsort).

As a bonus, it is possible to remove some of the explicit recursion from these
function definitions by replacing the explicitly defined isort with reduce as fol-
lows:

isort order = reduce (insert order) []

Program design with higher order functions 133

Exercise 4.16

An equivalent version of stringsort using accumulate would require that the argu-
ments to (insert lessthan) be reversed. Why is this the case?

4.4.2 Combining higher order functions

This subsection briefly looks at some of the many ways of combining higher order
functions.

Example—combining accumulate and map

The following is a simple example using map and accumulate to convert a string
to an integer:

string to int :: [char] -> num

string to int astring

= accumulate (plus . (times 10)) 0 (map ctoi astring)

ctoi :: char -> num

ctoi x = (code x) - (code ’0’)

This may be rewritten, using further function composition, as follows:

string to int :: [char] -> num

string to int astring

= ((accumulate (plus . (times 10)) 0) . (map ctoi))

astring

ctoi :: char -> num

ctoi x = (code x) - (code ’0’)

Notice that for any definition f x = expression x, where expression contains no
reference to x, then f and expression must be exactly equivalent (they both operate
on x to produce a result and the two results are equal by definition). Thus, the
given definition can be shortened to one which simply states that f and expression
are equivalent: f = expression. This does not alter the type of f; it is still a function
of one argument. This optimization may be applied to the above definition of
string to int as follows:

134 Curried and Higher Order Functions

string to int :: [char] -> num

string to int

= (accumulate (plus . (times 10)) 0) . (map ctoi)

ctoi :: char -> num

ctoi x = (code x) - (code ’0’)

This example reinforces the observation that function composition is the equivalent
of sequencing in an imperative style of programming, though here the program
sequence should be read from the rightmost composition towards the leftmost.

Example—combining map and filter

The functions filter and map may be combined to give a function which takes
a list of items, each of type (student, grade), and outputs the names of all
students with a grade less than 50%:

student == [char]

grade == num

results == [(student, grade)]

mapping == results -> [student]

weak students :: mapping

weak students

= (map fst) . filter ((isitlessthan 50) . snd)

Different approaches to combining functions

There are a number of approaches to combining functions and higher order func-
tions; to illustrate this point, two of the many possible versions of the function
length are now shown.

The first version has an underlying design that considers the length of a list as the
sum of a list which has had all of its items transformed into the number 1. Hence
the implementation must first transform each of its argument’s list elements into
a 1 and second perform the summation. This can be written using accumulate,
map and the combinator cancel as follows:

length = (accumulate (+) 0) . (map (cancel 1))

An alternative design is to think in terms of function composition and consider the
length of a list as the ongoing summation of each list element transformed into the
number 1:

length = reduce ((+) . (cancel 1)) 0

Summary 135

There are no rigid rules concerning which style to use. The best advice is to choose
the definition which most closely mirrors the natural specification; however this will
differ from problem to problem and from program designer to program designer.
Probably the biggest danger is to be tempted to go too far with the facilities shown
in this chapter:

guesswhat = (foldr (+) 0).(foldr ((:).((#).(:[]))) [])

Exercise 4.17

A function foldiftrue which reduces only those elements of a list which satisfy a
given predicate could be defined as:

foldiftrue :: (* -> bool) -> (* -> ** -> **) -> ** -> [*] -> **

foldiftrue pred ff default []

= default

foldiftrue pred ff default (front : rest)

= ff front (foldiftrue pred ff default rest), if pred front

= foldiftrue pred ff default rest, otherwise

Write this function in terms of a composition of reduce and filter.
Exercise 4.18

What is the purpose of the function guesswhat?

4.5 Summary

Much of the power of Miranda derives from its ability to treat functions themselves
as objects to be manipulated as easily as single values and data structures; a
function that either takes a function as an argument or returns a function as its
result is known as a higher order function.

All the functions introduced in this chapter are higher order functions. They
make extensive use of a functional programming language feature known as cur-
rying; this technique allows the programmer to express the partial application of
a function to less than all of its arguments. Since a partial application is itself
a function, this provides a simple and uniform mechanism for treating functions
as values; they may be passed as arguments to other functions and they may be
returned as the result of a function.

In order to emphasize the treatment of functions as values, a number of combi-
nators have been introduced. These combinators are higher order functions that
manipulate other functions. They may often help to simplify code by providing
simple, general-purpose manipulation of functions and their arguments. In partic-
ular, functional composition encapsulates the common practice of using the result

136 Curried and Higher Order Functions

of one function application as the input parameter to a second function. The
composition operator facilitates the repeated use of this technique, producing a
“pipeline” style of programming.

Higher order functions provide an elegant mechanism to remove the need for
explicit recursion. To demonstrate this facility for lists, three families of curried,
polymorphic higher order functions on lists have been introduced:

1. The map family, which retains the list structure but transforms the list items.
2. The fold family, which distributes an operator over a list, generally to pro-

duce a single value result.
3. The select family, which may select items from a list, according to a given

predicate.

