
Chapter 5

Environments and Evaluation

For the solution of large-scale programming problems, it is essential that the pro-
grammer takes a modular approach; first the problem must be subdivided into
manageable sub-problems, then each sub-problem is solved and the results com-
bined to provide the overall solution to the problem. This itself may be a recursive
process requiring several subdivisions and recombinations.

Hughes (Hughes, 1984) argues that the ways in which one can divide up the orig-
inal problem depend directly on the ways in which one can combine the solutions
of the sub-problems in order to arrive at the overall solution. Hughes provides
an attractive analogy with carpentry: a carpenter knows how to make joints to
enable pieces of wood to be combined to make a single object (a chair, perhaps)—
without the various kinds of joint, the carpenter would have to carve a chair out
of a solid block of wood (a much harder task!). The diversity of joints available
to the carpenter determines the diversity of objects which can be built with ease
(that is, without resort to solid carving). Similarly, the diversity of the methods of
combination available to a programmer determines the diversity of problems which
may be solved with ease.

This chapter discusses two methods of combination that have an important im-
pact on the structure and design of programs:

1. The organization and control of environments.

2. The use of lazy evaluation.

Organizing environments (by means of Miranda’s where mechanism and by list
comprehensions) gives the programmer a means of grouping dependent functions
and identifiers into a coherent programming block. The programmer may control
the “visibility” of function names, thereby controlling the parts of the program
where they can and cannot be used; this is a form of encapsulation, which makes
the resultant code safer, easier to understand, easier to maintain and more reusable.
The exploitation of lazy evaluation and infinite lists builds on the discussion in Sec-
tion 3.2.4 to give programmers a new way of thinking about problems. Functions

137

138 Environments and Evaluation

and environments may be combined in new ways; thus, laziness augments the
available methods of combination in the language and provides new and elegant
mechanisms for structuring programs.

5.1 Environments

When a Miranda script file is compiled, the system builds what is known as an en-
vironment, which comprises all the script file definitions and all the definitions from
the Standard Environment (as given in Section 28 of the on-line manual). Each
definition is said to bind a name to a value; this is often referred to as a binding .
When an object is defined it has access to all other bindings in the environment.
Any subsequent re-edit repeats this process; it removes the old definitions and
constructs a new environment by adding the new definitions to those given in the
Standard Environment.

When a function is defined, its body has a new environment consisting of the
environment defined above (often referred to as the “inherited environment”) to-
gether with the names of the function’s formal parameters (which are only bound
to actual values when the function is applied). This new environment is specific to
the function body and does not affect subsequent function definitions.

Free and bound names

In order to determine the value of a name that appears in a function’s body, one
of two rules is applied:

1. Any appearance of a formal parameter name takes its value from the ac-
tual parameter to which the function is applied. In other words, the local
environment ignores any previous binding for that name in the inherited en-
vironment. Formally, the name is said to be bound in that function. This
rule also holds for the name of the function itself.

2. Any other name that appears in the function body takes its value from the
inherited environment; formally, it is said to be free in that function. Any
function that does not have any free values is said to be closed or to exhibit
closure.

Scope

The region of program text in which a binding is effective is known as its scope.
Thus, the two rules presented above are often known as the rules of scope.

Outside the scope of a particular binding, the name for that binding has no
value and any reference to the name will result in an error (as will be demonstrated

Environments 139

below). The only exception to this rule is where a name is reused in a function-
body environment—in this case, if the name is used inside the function body it has
one value, and if it is used outside the function body may have a different value. It
should be clear that the redefinition of names in this way is not advisable because
of the confusion that can arise.

Figure 5.1 The scope of bindings.

Notice that the environment of an expression (that is, the set of names that are
accessible to the expression) depends only on the textual position of the expression
in the program.

The terms “bound” and “in scope” are often interchangeable, as are the terms
“unbound” and “out of scope”. For example, if a name that is free in a function
does not appear in the inherited environment then Miranda will report that it is
undefined, as shown in Figure 5.1. On exit from the editor, Miranda will report
the error message and all bindings from the faulty script will be discarded, for
example:

compiling script.m

checking types in script.m

(line 5 of "script.m") undefined name "y"

140 Environments and Evaluation

The error message displayed above means that Miranda cannot find a meaning
for y in the environment of the function not bound, although Miranda may have
a meaning for y in the local environment of another function. In the above case,
there was a value associated with the name y, but this was bound in the function
both bound.

What can be bound?

Reserved names1 cannot be re-bound, whilst it is recommended that function names
and type names should not be re-bound. Thus, the following example, which
rebinds predefined names, is legitimate but deplorable, in that it is not immediately
obvious what the function does:

nasty [] char = False

nasty (hd : tl) char

= True, if hd = char

= nasty tl char, otherwise

Even though char is a basic type and hd and tl are functions that are normally
provided by Miranda, their original meanings are suspended throughout the scope
of the function nasty. The function happens to work because the names char, hd
and tl are bound as formal parameters in the local environment for the function
nasty. However, it must again be stressed that this style is dangerous and definitely
not recommended.

5.1.1 The need for encapsulation

The next part of this chapter shows the need to restrict the scope of identifiers and
functions:

1. To avoid name clashes.

2. To link together closely-related functions.

Restricting the scope of an identifier or a function implies that it can only be used
in a small part of the program. This provides the ability to structure the program
as several smaller sub-programs. The process of building a sub-program which
contains identifiers and functions which cannot be used by the rest of the program
is often known as encapsulation.

1See Appendix A.

Environments 141

Name clashes

For small programs, any potential name clashes can easily be avoided. The devel-
opment of small programs is normally only undertaken by one person who can keep
track of the limited number of names. For larger programs, it is much harder to
guarantee the uniqueness of names because of their increased number and the fact
that more than one programmer will normally be involved in the software develop-
ment process. In this context, it is certainly unreasonable to expect a programmer
to invent new names for every new object in the system. Similarly, programmers
should not be expected to know the names of objects that they are not directly
interested in.

The next part of this chapter shows that unique names are not really a problem
because names can be limited to a particular scope; that is, programmers can
control their own program environment.

Linking related functions

A function’s formal parameters are only in scope within the function body; this
adds a little to the environment but this does not give much control. What is really
needed is a means of defining a function or value to have a limited scope; that is,
to have expressions that are not generally free in the script file, but are in scope
only for a particular function body.

Figure 5.2 A subsidiary function with global scope.

The simple example of rev, shown in Figure 5.2, makes use of an auxiliary

142 Environments and Evaluation

accumulative function xrev. The latter is not robust (as it does not validate its
parameter), nor is it reasonable to expect someone to know that it requires its
second parameter to be instantiated to []. The next section will discuss how to
restrict the scope of (or encapsulate) xrev so that it can only be used by rev.

5.2 Block structure: where expressions

The requirement for encapsulation can be met by binding xrev in the local envi-
ronment for the function body of rev, such that the existence of xrev is concealed
from any other function. In Miranda this may be achieved by using the keyword
where as shown in Figure 5.3.

Figure 5.3 A subsidiary function with restricted scope.

The fact that xrev is bound in the function rev is emphasized by the fact that
any attempt to use it on its own will give rise to an error:

Miranda xrev [1,2,3] []

UNDEFINED NAME - xrev

Use of the keyword where follows the “offside rule” introduced in Chapter 2. It
may appear after the function body for any particular pattern and is in scope for
that entire function body, including guards, but is not in scope for the function
bodies of other patterns for the same function definition. These rules are illustrated
in the rest of this section.

Block structure: where expressions 143

Shortening expressions

The following example shows one of the simplest uses of where, which is to make
code more readable by replacing long expressions with shorter ones. In Figure 5.4,
the single names low and high replace the unwieldy expressions (fst (split

pred rest)) and (snd (split pred rest)). Once again, the new binding is
not available outside the restricted scope.

Figure 5.4 The scope of names in a where block.

Notice that the local (low, high) definition is available to both guards for the
pattern (front : rest), but is not available to the function body for the first
pattern [].

Multiple definitions within a where clause

There is no restriction on the number of definitions that can appear within a where

expression and, as expected, if more than one definition appears then the where

sub-environment is built in exactly the same way as the top-level environment.
This is demonstrated in the following program (part of a text justifier) which
throws away all leading “white space” characters in a string and which compresses
all other occurrences of multiple white space characters into a single space:

144 Environments and Evaluation

string == [char]

compress :: string -> string

compress astring

= (squeeze . drop) astring

where

space = ’ ’

tab = ’\t’

newline = ’\n’

isspace c

= (c = space) \/ (c = tab) \/ (c = newline)

|| this is not the Standard Environment drop

drop [] = []

drop (front : rest)

= drop rest, if isspace front

= (front : rest), otherwise

squeeze [] = []

squeeze (front : rest)

= space : squeeze (drop rest), if isspace front

= front : squeeze rest, otherwise

Nested where clauses

Local where clauses may be nested; perhaps the major use is to reflect the top-
down design of a program, whilst restricting the scope of all of the auxiliary func-
tions. The offside rule applies to the nested where block in the same way that
it applies to the first where block. The following reworks the int to string

conversion program of Chapter 2:

string == [char]

int to string :: num -> string

int to string n

= "-" ++ pos to string (abs n), if n < 0

= pos to string n, otherwise

where

pos to string n

= int to char n, if n < 10

= pos to string (n div 10)

++ (int to char (n mod 10)), otherwise

where

int to char n = decode (n + code ’0’)

Block structure: where expressions 145

Another example of the use of nested where clauses is given in the implementa-
tion of quicksort as shown in Figure 5.5. Quicksort is a recursive sorting algorithm
which works by choosing one of the values in the list as a pivot; the list is then split
into a sublist of all values less than the pivot, the pivot itself and a sublist of all
values greater than the pivot; the quicksort algorithm is then applied to each of the
two sublists just generated (choosing a new pivot for each sublist). Empty sublists
are ignored and eventually every value will have been considered as a pivot—all
the pivots are now in order and can be collected together to form the sorted list,
as required.2

Figure 5.5 The scope of names in nested where blocks.

2For more details see (Standish, 1980).

146 Environments and Evaluation

The implementation uses the split function to decompose the unsorted list, to
yield a tuple pair of those values that satisfy the ordering function and those that
do not.3 The example demonstrates how where expressions may be nested, with
the effect that the names low and high can be used in two different contexts. In
general, this is considered to be bad style because of the potential confusion over
names. However, the example serves to illustrate that it is possible, and indeed
this poor naming policy is unfortunately not uncommon amongst programmers.

Exercise 5.1

Write a function, using where definitions, to return the string that appears before a
given sublist in a string. For example, beforestring "and" "Miranda" will return the
string "Mir".
Exercise 5.2

The Standard Environment function lines translates a list of characters containing
newlines into a list of character lists, by splitting the original at the newline characters,
which are deleted from the result. For example, lines applied to:

"Programming with Miranda\nby\nClack\nMyers\nand Poon"

evaluates to:

["Programming with Miranda","by","Clack","Myers","and Poon"]

Write this function using a where definition.

Sharing common subexpressions

Using where can also produce more flexible code when a subexpression appears
more than once in another expression. For instance, the function oklength checks
to see if a given string is of at least a specified size lowerbound and not larger than
upperbound:

oklength :: [*] -> num -> num -> bool

oklength s lowerbound upperbound

= (# s) >= lowerbound & (# s) <= upperbound

However, (# s) appears twice and might have to be altered twice if the function
specification changed. If a where definition is used then the alteration can be
done in one place only, thereby making the programmer’s task easier and the code
safer.

3To sort integers in ascending order, the ordering function should be isitlessthan since it
is used in a partially applied manner within split.

Block structure: where expressions 147

oklength :: [*] -> num -> num -> bool

oklength s lowerbound upperbound

= slen >= lowerbound & slen <= upperbound

where slen = # s

The new version is not only easier to read, but will execute more efficiently, since
the common subexpression will only be evaluated once.4 The advantage of this
modular approach becomes increasingly more apparent as the subexpression occurs
more often in the main expression.

Eliminating unnecessary parameters

The following curried version of the sublist function from the grep program
(shown in Chapter 3) uses an auxiliary function xsublist, whose binding is con-
fined to sublist but does not carry around the regexp parameter on each of its
recursive applications. Although regexp is free in xsublist, it is in scope and
hence accessible to xsublist:

string == [char]

mtype == string

regtype == (mtype, char)

reglist == [regtype]

sublist :: reglist -> string -> bool

sublist regexp line

= (startswith regexp line) \/ xsublist line

where

xsublist []

= False

xsublist (any : lrest)

= (startswith regexp lrest)

\/ (xsublist lrest)

This is quite a popular functional programming style because it is generally easier
to read functions with less parameters. Unfortunately, this style can be abused.
The following definition of unclearmap also saves on passing a parameter (ff), but
may be considered less clear because it is not obvious from where xmap expects its
list parameter:

4This beneficial feature is known as sharing and is a form of lazy evaluation, as will be shown
in Section 5.4.

148 Environments and Evaluation

unclearmap :: (* -> **) -> [*] -> [**]

unclearmap ff

= xmap

where xmap [] = []

xmap (front : rest) = (ff front) : xmap rest

A clearer version would include the list parameter:5

clearmap :: (* -> **) -> [*] -> [**]

clearmap ff anylist

= xmap anylist

where xmap [] = []

xmap (front : rest) = (ff front) : xmap rest

5.2.1 A larger example of where blocks

The following program (adapted from (Park and Miller, 1988)) generates a list of
random numbers and illustrates the use of where to provide a local (restricted)
environment.

>||Literate script (Page 1 of 2 pages)

Program to generate a list of random real numbers

for systems with 46-bit mantissas, with a function

to constrain the result to integer limits

generate N random numbers

and a new seed from an initial seed

>randomize :: num->num->(num,([num],num))

>randomize n firstseed

> = error "randomize: negative number", if n < 0

> = genlist n firstseed [], otherwise

> where

> c1 = 16807.0

> upperbound = 2147483647.0

> nextseed seed

> = (c1 * seed) - (upperbound

> * (entier ((c1 * seed)/upperbound)))

> genlist 0 seed ranlist

> = (seed, (ranlist,upperbound))

> genlist n seed ranlist

> = genlist (n-1) (nextseed seed) (seed:ranlist)

5Notice that the types of unclearmap and clearmap are identical.

List comprehensions 149

>||Literate script continued (Page 2)

constrain real number to an acceptable integer range

>constrain :: num->([num],num)->[num]

>constrain k (rlist,u)

> = map (xconstruct k u) rlist

> where

> xconstruct k u r = 1 + entier ((r / u) * k)

the function could be used in the following manner:

(constrain 3) (snd (randomize 50 1.1))

This creates a list of 50 random numbers,

in the range 0 to 3, with an initial seed of 1.1

Type expressions

Note that type expressions may not appear inside where blocks. Thus, in the
above example, it is unfortunately not possible to specify the type of the function
genlist.

5.3 List comprehensions

This section presents another method of restricting the scope of identifiers; the
“list comprehension” facility which is a way to specify the elements of a list
through calculation (intensionally), rather than by explicitly stating each element
(extensionally).6

Simple list comprehension definition and usage

The template for a simple list comprehension consists of an expression which is
used to calculate the components of the resultant list, together with an iterative
construct which defines successive values for a local identifier by providing these
values as a list. The local identifier is only in scope in the expression (it is encapsu-

lated); for each successive value of the local identifier, the expression is recalculated
to provide a new component of the resultant list:

[expression | identifier <- value list]

6In this respect, it is similar to the “dotdot” notation shown in Chapter 3.

150 Environments and Evaluation

It helps to pronounce the vertical bar as “such that” and the arrow as “is drawn
from”. Any expression may occur to the left of the vertical bar. For example:

squares3 = [x * x | x <- [1,2,3]]

This reads as:

“the list of all values x ∗ x

such that x is drawn from the list [1,2,3]”.

The values for the local identifier are drawn from the value list in order, from left
to right. In this case, initially x gets the value 1 and the first value of the resultant
list is calculated as (1 ∗ 1 = 1), then x gets the value 2 and the next element of
the result list is calculated as (2 ∗ 2 = 4) and finally x gets the value 3 and the
final element is calculated as (3 ∗ 3 = 9). Hence entering squares3 at the Miranda
prompt gives the list [1,4,9].

The list comprehension is thus a shorthand for an anonymous function over a
list. The above could have been rewritten with a named local function:

squares3 = xsquares3 [1,2,3]

where

xsquares [] = []

xsquares (front : rest)

= (front * front) : xsquares rest

The above example can be generalized to give a list of squares for any given number:

squaresN n = [x * x | x <- [1..n]]

Inside this list comprehension x is a local identifier and n is free but in scope
(because it is bound to the actual parameter for squaresN).

The next example is interesting in that the local identifier is only needed as a
dummy to control the iteration; the number of dots is determined by the number
of times the expression ’.’ is recalculated, which is controlled by the number
of different values for the local identifier j, which is controlled by the function
parameter n.

printdots n = [’.’ | j <- [1..n]]

The elegance of simple list comprehensions is further demonstrated in the following
definition for the higher order function map:

map f itemlist = [f item | item <- itemlist]

The function map and the simple list comprehension often provide equally concise
definitions of the same function and may be used interchangeably, for example:

squares3 = [x ^ 2 | x <- [1,2,3]]

squares3 = map (^ 2) [1,2,3]

List comprehensions 151

General list comprehensions

The template for a general list comprehension is:

[expression | qualifiers]

A general list comprehension produces the list of all elements given by expression
such that the qualifiers hold. There may be many qualifiers; if there are more than
one, they must be separated by a semicolon (pronounced “and”). There are two
forms of qualifier:

1. A generator, which provides successive values for a local identifier (as illus-
trated in the previous section). Each local identifier is in scope in expression,
in the qualifier wherein the identifier is defined, and in all qualifiers to the
right of that defining qualifier.

2. A filter, which is a Boolean expression to restrict the range of the values
given to a local identifier defined in a generator to the left of the filter.

The following examples (the first taken from the Miranda On-line Manual)) demon-
strate further aspects of list comprehension as a mechanism to create a local envi-
ronment:

1. Multiple qualifiers.

2. Multiple local identifiers.

3. Recursive list comprehensions.

The function factors shows the use of a qualifier in conjunction with a filter:

factors n = [r | r <- [1..(n div 2)]; n mod r = 0]

This can be read as:

The list of all elements r
Such that

r is drawn from the list of integers
starting at 1 and ending with (n div 2)

And
(n mod r) is equal to 0

If n in the above example is 9 then r will be drawn from the list [1,2,3,4], but
only those values for which (9 mod r) = 0 will be allowed. Thus, r will take the
successive values 1 and 3 and the result will be the list [1,3].

Note that the rules of scope for the local identifier r mean that the qualifiers
could not have been written in reverse order. The following examples compare two
versions with n set to the value 17:

152 Environments and Evaluation

Miranda [r | r <- [1..(17 div 2)]; 17 mod r = 0]

[1]

Miranda [r | 17 mod r = 0; r <- [1..(17 div 2)]]

[

UNDEFINED NAME - r

Multiple generators represent nested loops, with the leftmost generator being the
outermost loop:

cartesianA n m = [(x,y) | x <- [1..n]; y <- [1..m]]

This is read as:

The list of all two-tuples (x, y)
Such that

x is drawn from the list [1..n]
And

y is drawn from the list [1..m]

In the above example, the leftmost generator for x performs the outermost loop
and so the resultant list for cartesianA 2 3 is [(1,1), (1,2), (1,3), (2,1),

(2,2), (2,3)]. By contrast, with the definition:

cartesianB n m = [(x,y) | y <- [1..m]; x <- [1..n]]

the resultant list for cartesianB 2 3 is [(1,1), (2,1), (1,2), (2,2), (1,3),

(2,3)].
If two local identifiers are drawn from the same list then a shorthand notation is

available; the single generator x,y <- [1..3] is equivalent to the two generators
x <- [1..3]; y <- [1..3]. Hence:

squarecoords n = [(x,y) | x,y <- [1..n]]

This can be read as:

The list of all two-tuples (x, y)
Such that

x is drawn from [1..n]
And

y is drawn from [1..n]

Hence squarecoords 2 evaluates to: [(1,1),(1,2),(2,1),(2,2)].
The final example (also from the Miranda On-line Manual) generates all the pos-
sible permutations for a given list, demonstrates a list comprehension with more
than one local identifier, more than one local calculation and also involves a re-
cursive application of permutations. Notice that the local identifiers in a list
comprehension come into scope from left to right, so that a generator can make
use of identifiers already defined to its left, but not vice versa.

Lazy evaluation 153

permutations [] = [[]]

permutations anylist

= [front : rest | front <- anylist;

rest <- permutations(anylist--[front])]

The list comprehension in this example can be read as:

The list of all lists (front : rest)
Such that

front is drawn from the list anylist
And

rest is drawn from the result of the recursive call to permutations,
when applied to the argument anylist -- [front])

Exercise 5.3

Define a list comprehension which has the same behaviour as the built-in function
filter.
Exercise 5.4

Rewrite quicksort using list comprehensions.

5.4 Lazy evaluation

This section explores a style of programming that is not generally available in other
languages: programming by means of infinite lists of data, together with the use
of generator functions and selector functions.

5.4.1 Lazy evaluation of lists

As has been shown in previous chapters, Miranda is a lazy functional language;
this means that parameters to functions are evaluated only when necessary and
that shared subexpressions are never evaluated more than once. Furthermore, the
items in a list are only evaluated if their values are necessary to produce a result.
In other words, Miranda will not always fully evaluate a function’s environment.
For example, in the following Miranda session:

Miranda const 3 (4 / 0)

3

the (4 / 0) is not needed and so is not evaluated.

154 Environments and Evaluation

Similarly:

Miranda hd [3, (4/0)]

3

Evaluation of a list has two distinct stages: a function such as hd may cause the
first item of a list to be evaluated, but does not need to evaluate the rest of the
list; by contrast, a function such as length may need to know the number of items
in a list without needing to evaluate the items in the list. Thus:

Miranda length [3, (4/0), 5]

3

Lazy evaluation implies that both evaluation stages of a list are only undertaken
as necessary. Since the tail of a list may never be evaluated, it is possible to exploit
this fact to define potentially infinite lists (perhaps using a recursive function) and
then only use that part of the list that is required. For example:

natsfrom n = n : natsfrom (n + 1)

This will generate the list (n : (n + 1) : (n + 2) : ...). If an expression
such as natsfrom 1 were typed at the Miranda prompt then Miranda would at-
tempt to print out the entire list and will continue to do so until the user forcibly
interrupts the process or Miranda suffers some internal error.7

Clearly natsfrom on its own is useless, but when combined with other functions
it becomes very powerful. This is shown in the following higher order function
make index pairs which takes a list of items and produces a list of pairs, where
each item has been paired with an index number. The function natsfrom is used
to generate an infinite list of indices (because make index pairs must work on
input lists of any length) and zip2 ensures that just enough of the infinite list is
selected in order to give an index to each item:

make index pairs :: [*]->[(num,*)]

make index pairs names = zip2 (natsfrom 1) names

|| where zip2 is defined in the Standard Environment

|| and is similar to map two defined in Chapter 4

Miranda make_index_pairs ["chris","colin","ellen"]

[(1,"chris"),(2,"colin"),(3,"ellen")]

It is worthwhile comparing this definition to a recursive version where a subsidiary
function makepairs must explicitly control the index number generation:

7Remember that Miranda has infinite-precision integers, which means that it will generate
integers until the system memory is no longer big enough to represent the integer.

Lazy evaluation 155

make index pairs :: [*]->[(num,*)]

make index pairs names

= makepairs 1 names

where

makepairs n [] []

makepairs n (front2 : rest2)

= (n, front2) : (makepairs (n + 1) rest2)

Note that the two versions exhibit exactly the same behaviour and have exactly
the same type.

5.4.2 Infinite “dotdot” lists

Miranda recognizes the utility of infinite lists by providing a special form of the
“dotdot” notation (introduced in Section 3.2.4) whereby potentially infinite lists
are specified by omitting the final number from the “dotdot” expression. Thus
[1..] represents the potentially infinite list of ascending integers starting at 1,
and [2,4..] represents the potentially infinite list of ascending even numbers
starting at 2.

The function make index pairs can now be defined using this notation:

make index pairs names = zip2 [1..] names

This can be compared favourably with the previous higher order definition, which
required an additional definition for natsfrom. It is also less cluttered than the
following definition using finite “dotdot” notation, which requires identification of
the names parameter and then explicit calculation of its length:

make index pairs names = zip2 [1..#names] names

Finally, the infinite dotdot version could be made more elegant by defining the
name make index pairs to be an alias for the partial application of zip2:

make index pairs = zip2 [1..]

Infinite list comprehensions

Not surprisingly, infinite “dotdot” lists are often used in conjunction with list
comprehensions, for example:

oddsquares = [x * x | x <- [1,3..]]

which returns a list of all the squares of odd numbers.

156 Environments and Evaluation

The first n items could be selected using take:

Miranda take 3 oddsquares

[1,9,27]

An equivalent recursive program is:

oddsquares = xodds 1

where

xodds n = (n * n) : xodds (n + 2)

which would be applied in exactly the same manner.
The next example introduces a variation on the basic mechanism, where a gen-

erator may be expressed in terms of itself (this is sometimes called a recurrence
relation). A recursive generator uses the syntax n <- exp1, exp2 .. and is similar
to the dotdot expression [exp1,exp2 ..]; except that there are no square brackets,
and exp2 is defined recursively in terms of n:

powers of two = [n | n <- 1, 2 * n ..]

The above list comprehension can be read as:

The list of all items n
Such that

n is drawn from the list of values
starting with 1 and calculating each new value
by multiplying the current value of n by 2.

Exercise 5.5

Use a list comprehension to write a function that generates a list of the squares of
all the even numbers from a given lower limit to upper limit. Change this function to
generate an infinite list of even numbers and their squares.

5.4.3 Generators and selectors

In general, lazy evaluation makes it possible to modularize a program as a gen-
erator function, which constructs a large number of possible answers (perhaps as
a potentially infinite list), and a selector function, which chooses the appropriate
answer. The selector function is applied to the output of the generator function;
this is often achieved using function composition. This section takes a further look
at this programming style, in conjunction with list comprehensions, infinite lists

Lazy evaluation 157

and also finite but very large lists. As with higher order functions (Section 4.2),
there are no rigid rules which style or approach to use. Once again the best advice
is to choose the definition which most closely mirrors the natural specification and
then optimize if necessary.

Grep as a generator

In Section 4.3.3, the grep function was extended so that it would inspect a list of
lists of characters (representing many lines of text) and return those lines which
contain a given pattern. Here, the code for grep is repeated:

string == [char]

grep :: string -> [string] -> [string]

grep regexp = filter (xgrep regexp)

xgrep :: string -> string -> bool

xgrep regexp line = sublist (lex regexp) line

Assume that the identifier manual is bound to a list of lists of characters; the grep
function can now be utilized to provide a list of all lines in manual in which the
word "evaluation" appears. For example:8

Miranda grep "evaluation" manual

["Lazy evaluation is elegant.",

"evaluation of arguments is also an",

"It also optimizes evaluation."]

The above application of grep can be viewed as a generator of data; it inspects all
of the text in manual and returns the appropriate data. Parts of that data can now
be selected by a separate function. For example, to select the first line in manual

which mentions "evaluation":

Miranda hd (grep "evaluation" manual)

"Lazy evaluation is elegant."

Here, the function grep generated data and the function hd selected a part of that
data. Lazy evaluation ensures that grep only inspects the text in manual as far as
necessary to generate one line of output data (which is all that hd needs).

Interestingly, the same function can be used as both a generator and a selec-
tor. For example, to select all lines in manual which mention both the word
"evaluation" and the word "also":

8Miranda would actually print the output all on one line, but it is split across several lines
here to make it clearer.

158 Environments and Evaluation

Miranda grep "also" (grep "evaluation" manual)

["evaluation of arguments is also an",

"It also optimizes evaluation."]

However, in this case, because grep in its role as a selector must inspect all of its
argument, then so must grep in its role as a generator.

Pipelining generators and selectors

Generator functions and selector functions are often combined using function com-
position to produce a “pipeline”. There may be more than one selector function
in the pipeline, as illustrated by the following session which calculates the length
of the first line in manual which mentions both of the words "evaluation" and
"also":

Miranda (# . hd . (grep "also")) (grep "evaluation" manual)

34

In this case it is also possible to include the generator in the function composition:

Miranda (# . hd . (grep "also") . (grep "evaluation")) manual

34

In these examples, hd only requires the first part of the data from (grep "also"),
which therefore only needs sufficient data from (grep "evaluation") in order to
determine the first line which contains the word "also". Thus, lazy evaluation
ensures that only a small part of the text in manual is inspected.

The lazy evaluation of generators also applies where the generator is a list com-
prehension. In the following example, only the first square is calculated by the list
comprehension because that is all that the selector takewhile (< 20) requires:

Miranda takewhile (< 20) [x * x | x <- [2,4..2000]]

[4,16]

The above expression can be rewritten with the selector inside the list comprehen-
sion:

Miranda [x * x | x <- [2,4..2000] ; x * x < 20]

[4,16]

However, in the above expression all of the squares from 4 to 4,000,000 are cal-
culated! This is because selectors inside a list comprehension cannot affect the

evaluation of generators inside the same list comprehension.

Lazy evaluation 159

5.4.4 Pitfalls for the unwary user of laziness

The ability to specify potentially infinite computation and potentially infinite lists
is an extremely powerful tool which must be used with care. There are three
major potential pitfalls when employing a selector approach to restricting a lazily
generated list:

1. Looking beyond the solution.
2. Never reaching the solution.
3. Losing laziness, and thereby doing too much computation.

Looking beyond the solution

A potential mistake with list comprehensions is to write a function which produces
a list containing the required items but continues to look for more items and
never terminates because no more exist! An example of this kind of error is now
considered:

neverending cubes lessthan fifty

= [x ^ 3 | x <- [1..]; x ^ 3 < 50]

Whilst it is quite clear that there are only three cubes which are less than fifty,
the function has been defined to consider all possible cubes and test every one of
them to see if it is over fifty. Unfortunately, the function will produce the result
[1,8,27 and will then “hang” whilst it continually loops and tests all the other
generated cubes.

As explained in the previous section, this error occurs because a filter inside
a list comprehension cannot be used to modify the number of times a generator
(in the same list comprehension) loops—it can only determine which of the values
produced by the generator will be valid for the local identifier.

However, the error of looking beyond the solution is not restricted to the use of
list comprehensions. Here is an example which abuses function composition:

also neverending cubes lessthan fifty

= ((filter (<50)) . (map (^ 3))) [1..]

This function attempts to generate the infinite list of numbers and then to cube
all of these numbers and finally to test each cube to check if it is less than fifty; in
other words, it loops forever.

In order to correct this error, it is necessary to make use of the fact that each
successive cube will be larger than the previous one, and so as soon as one cube
fails the test then all subsequent cubes will also fail the test:

cubes lessthan fifty

= ((takewhile (< 50)) . (map (^ 3))) [1..]

160 Environments and Evaluation

The function takewhile terminates as soon as it finds an element that is less
than fifty. The values of the remaining cubes are never needed; they will never be
generated and so there will be no infinite computation.

Never reaching the solution

The above discussion showed the dangers of finding the result and going beyond
it; however, sometimes the result may never be reached. This mainly arises with
list comprehensions that have more than one generator ranging over an infinite
list. For example, the function wrong triangles is meant to produce the infinite
list of three-tuples (triples) which represent the lengths of the sides of right-angled
triangles. However, it fails to produce a single element of that list!

wrong triangles

= [(a,b,c) | a,b,c <- [1..]; a ^ 2 + b ^ 2 = c ^ 2]

To understand the behaviour of the above function, recall the following:

1. The construction a,b,c <- [1..] is an abbreviation for the three terms
a <- [1..]; b <- [1..]; c <- [1..].

2. Multiple generators represent nested loops, with the leftmost generator con-
trolling the outermost loop. Thus, in the above example, the values generated
for (a,b,c) will be, in order: (1,1,1), (1,1,2), (1,1,3), (1,1,4) and
so on until all of the (infinite) values of c have been considered.

3. Because the innermost loop for c is infinite, the values for (a,b,c) where a

or b are greater than 1 are never considered .
4. There is no solution to the problem for a = 1 and b = 1, so the function will

loop forever.

In recognition of the above problem, Miranda provides a “diagonalizing” list com-
prehension which combines multiple generators in a different order. If there are two
generators a,b <- [1..], the diagonalizing list comprehension tries values in the
following sequence: (1,1), (1,2), (2,1), (1,3), (2,2), (3,1), (1,4), (2,3), (3,2), (4,1),
(1,5), (2,4), (3,3), and so on. A diagonalizing list comprehension uses the same
syntax as a normal list comprehension, except that the vertical bar is replaced by
two forward-slashes:

triangles = [(a,b,c) // a,b,c <- [1..];

a^ 2 + b^ 2 = c^ 2]

The above definition of triangles will still loop forever, but it will test combina-
tions of a, b and c in a “reasonable” order so that solutions are actually generated:

Miranda triangles

[(4,3,5),(3,4,5),(8,6,10),(6,8,10),(12,5,13) ...

The result is still an infinite list, but one that can generate results that can be used
by a selector function.

Lazy evaluation 161

Losing laziness

It is sometimes tempting to assume that, no matter how a program is written,
somehow the Miranda system will always work out the most lazy (that is, least
computationally expensive) solution. This is not the case! Unfortunately, it is
quite easy to write a selector in such a way (perhaps using pattern matching)
that it forces evaluation; hence it does unnecessary computation and so takes an
unreasonably long time to execute.

For example, consider the following program which illustrates the use of a gen-
erator and several selectors in order to produce the thirteenth prime number:

primes12 = selectors generator

where

generator = [2..1000]

selectors = ((!12) . (foldr sieve []))

sieve x [] = [x]

sieve x any

= x : (filter ((0 =).(mod x)) any)

In the above example, the dotdot expression is the generator; it generates a list of
numbers between 2 and 1,000. The primes12 function applies the selectors to the
result of this generator. The first selector is foldr sieve [], which distributes the
function sieve across the list, and so performs a standard “sieve of Eratosthenes”
to produce a list of prime numbers (assuming that the thirteenth prime is less
than 2000). The final selector is (!12), which is a prefix sectional form of the list
indexing operator (recall that (!0) selects the first item in a list). The function
works as follows:

Miranda primes12

41

Initially, it appears that if generator is replaced by an infinite dotdot list then
selectors can be generalized so that it can pick an arbitrary nth prime number:

nth prime n = selectors generator

where

generator = [2..]

selectors = ((!n) . (foldr sieve []))

sieve x [] = [x]

sieve x any

= x : (filter ((0 =).(mod x)) any)

Lazy evaluation should ensure that the generator will only do as much work as is
required by the last (the leftmost) selector (which is (!n)). Now, nth prime 12

should produce the same result as the previous version because generator will
only generate the numbers from 2 to 41. However, this is evidently not the case as
the following test reveals:

162 Environments and Evaluation

Miranda nth_prime 12

<<not enough heap space -- task abandoned>>

The above behaviour happens because one of the selectors requires all of its input

data to be evaluated before it will return a result.

The offending selector is actually (foldr sieve []). This is somewhat surpris-
ing since the following behaves correctly:

Miranda ((!12) . foldr (:) []) [1..]

13

Thus, it is not foldr which requires the entire input to be evaluated. The culprit is
actually the function sieve—this is because sieve has been defined with pattern
matching on its second argument. The consequence of this is that the second
argument must be evaluated as far as is necessary to determine whether it is an
empty list. However this second argument is the recursive application of foldr,
which entails another application of sieve and therefore triggers an evaluation
of the next part of the list, and so on. This behaviour is illustrated in the hand
evaluation given below:

(!0) (foldr sieve [] [2,3,4])

==> (!0) (sieve 2 (foldr sieve [] [3,4]))

==> (!0) (sieve 2 (sieve 3 (foldr sieve [] [4])))

==> (!0) (sieve 2 (sieve 3 (sieve 4 (foldr sieve [] []))))

==> (!0) (sieve 2 (sieve 3 (sieve 4 [])))

==> (!0) (sieve 2 (sieve 3 ([4])))

==> (!0) (sieve 2 ([3,4]))

==> (!0) ([2,3])

==> 2

Compare this to the following:

(!0) (foldr (:) [] [1,2,3])

==> (!0) ((:) 1 (foldr (:) [] [2,3]))

==> (!0) (1 : (foldr (:) [] [2,3]))

==> 1

In the first hand evaluation, foldr sieve [] [2,3,4] cannot produce the initial
list item until the entire input list has been scanned. By contrast, the expression
foldr (:) [] [1,2,3] can produce the initial item almost immediately because
(:) does not require pattern matching; lazy evaluation ensures that the calculation
for the rest of the list is never done.

The generalized program can be made lazy if the function sieve does not use
pattern matching (which in this case was entirely unnecessary):

Summary 163

nth prime n

= selectors generator

where

generator = [2..]

selectors = ((!n) . (foldr sieve []))

sieve x any = x : (filter ((0 =).(mod x)) any)

Miranda nth_prime 12 [2..]

41

5.5 Summary

One of the very first features of Miranda to be covered in this book was the ability
to allocate names to expressions. These names are useful because the values of
their expressions may be recalled by using the names in subsequent expressions.
There are strict rules which govern the binding of names to values and which
dictate how these names are made accessible to subsequent expressions. Firstly,
every expression has access to those names that exist in its environment; secondly,
the environment of an expression depends on the textual position of the expression
in the program; thirdly, the various environments in the program may be explicitly
augmented using where definitions and list comprehensions.

The main advantage of using these two techniques is that closely related functions
and definitions may be self-contained and so not rely on values bound outside the
expression (that is, they exhibit closure). They are consequently safer and easier
to reuse.

Infinite lists are available to the Miranda programmer as a direct result of the lazy
evaluation mechanism; the presence of infinite lists, list comprehensions, function
composition and higher order functions leads to a style of programming which
combines data generators with data selectors. This style is powerful and expressive,
but care must be taken to avoid infinite computations and to avoid evaluating too
much data.

In particular, it is possible to express the solution to a problem as a combination
of a generator of data and a selector which operates on that data (and possibly
several subsequent selectors). This encourages an approach to software design
whereby a specific problem is solved as the result of a specialization of a general
problem, and where the solution is divided into separate components, which are
coupled via potentially infinite lists of data, which are evaluated lazily. This ap-
proach has the considerable advantage that a selector component can be replaced
with a different component in order to solve a different problem. If several selec-
tors are combined using functional composition, this leads to a “pipeline” style of
programming, which leads to greater reuse of code and faster code production.

