
Chapter 7

Abstract Types

This chapter concludes the presentation of Miranda’s type system by introducing
the abstract type mechanism, which allows the definition of a new type, together
with the type expressions of a set of “interface” or “primitive” operations which
permit access to a data item of the type. The definitions of these primitives are
hidden, providing an abstract view of both code and data; this leads to a better
appreciation of a program’s overall meaning and structure.

The use of type expressions as a design tool and documentary aid has already
been encouraged in previous chapters. The abstype construct (also known as an
“abstract data type” or “ADT”1) defines the type expressions for a set of interface
functions without specifying the function definitions; the benefits include the sep-
aration of specifications from implementation decisions and the ability to provide
programmers with the same view of different code implementations. In summary,
Miranda’s abstype mechanism provides the following two new programming ben-
efits:

1. Encapsulation.

2. Abstraction.

Encapsulation

There are considerable benefits if each programmer or programming team can be
confident that their coding efforts are not going to interfere inadvertently with
other programmers and that other programmers are not going to inadvertently
affect their implementation details. This can be achieved by packaging a new type
together with the functions which may manipulate values of that type.

Furthermore if all the code required to manipulate the new type is collected in

1However, there is a subtle difference between Miranda’s abstype mechanism and traditional
ADTs—see Section 7.1.2.

187

188 Abstract Types

one place it is easier to test, modify or maintain and to make accessible to other
programmers.

Abstraction

The set of type expressions in an abstype is called the signature of the abstype.
The purpose of the interface signature in an abstype is to provide a high-level
specification of the types of functions which operate on a new type. By using
an interface signature, it is possible to “abstract” away from the decision of what
underlying type the actual implementation will use. This has the bonus of allowing
the implementor considerable freedom to alter the underlying representation at a
later time without needing to change a single line of code in the rest of the program
(as long as the type and the purpose of each interface function remain the same
and the program is recompiled).2

For example, if one programmer develops a number of functions that manipu-
late a data item (perhaps the functions validate date and days between dates

which manipulate dates) then it is wasteful for other programmers to develop the
same functions. Furthermore, as long as they know the type signatures of the
functions and what actions the functions perform then it is unnecessary for other

programmers to understand how the functions are implemented.

If these operations are linked with the creation of a new type then the advantages
of built-in type validation are also available.

Syntax

The syntax for using an abstype is given by the following general template:

abstype type declaration
with function type signature1

. . .
function type signatureN

type declaration instantiation

function definition1
. . .

function definitionN

2This can be particularly useful if the implementation proves too slow or the input data profile
changes.

Simple abstract type definition and usage 189

The functions declared within the abstype body provide the public interface to
the new type; that is, values of this type can only be manipulated via the public
interface functions.

Note that the abstype itself merely specifies the name of a new type and the
types of the interface functions—the definitions of the type and the interface func-
tions are given immediately afterwards, just as they would be if they were not
encapsulated as an abstype. This enforces the intention that type information
(in the signature) should be separated from implementation information (in the
subsequent function definitions).

7.1 Simple abstract type definition and usage

The following example shows how the natural numbers (that is, the non-negative
integers) can be considered as an abstype package, consisting of a numeric type
together with frequently required associated functions. This package would typi-
cally be used to manipulate anything for which a negative representation would be
meaningless, “prices” and “quantities” being two frequent cases.

It should be noted that the number of functions in the package is limited to
mimic those provided by the built-in arithmetic and relational operators; as with
the built-in types, there is no need to provide functions for every possible user-
specified operation involving natural numbers.3 The functions that are provided
are often known as primitives because they can be considered the raw building
blocks for the type.

Abstract type definition

|| abstype nat specification

abstype nat

with

makeNat :: num -> nat

natEqual :: nat -> nat -> bool

natLess :: nat -> nat -> bool

|| similarly for the other comparison operators

natMinus :: nat -> nat -> nat

natPlus :: nat -> nat -> nat

|| similarly for the other arithmetic operators

natDisplay :: nat -> num

3See Section 7.4 for guidelines on which functions should be packaged.

190 Abstract Types

|| abstype nat implementation details

nat == num

makeNat x

= error "makeNat: non-negative integer expected",

if (x < 0) \/ (~(integer x))

= x, otherwise

natDisplay x = x

natEqual = (=)

natLess = (<)

natMinus x y

= error "natMinus: negative result", if (x - y) < 0

= x - y, otherwise

natPlus = (+)

|| and similarly for the other operators

The above code illustrates the following points:

1. The abstype is useless on its own—the programmer must also provide under-
lying definitions for the type and the interface functions.

2. Every function name declared within a signature must have a corresponding
definition. If a definition is missing, an error arises:

abstype stack *

with

emptystack::stack *

pop :: stack * -> *

push :: stack * -> * -> stack *

stack * == [*]

emptystack = []

pop [] = error "empty stack"

pop (x : xs) = x

compiling script.m

checking types in script.m

SPECIFIED BUT NOT DEFINED: push;

Simple abstract type definition and usage 191

This rule has the clear advantage that it prevents a programmer from speci-
fying something and then forgetting to code it!

3. Any function definition whose name matches a name which appears within
an abstype signature must be of the type declared in the signature.

abstype stack *

with

emptystack::stack *

pop :: stack * -> *

push :: stack * -> * -> stack *

stack * == [*]

emptystack = []

pop [] = error "empty stack"

pop (x : xs) = x

push xs x = (x, xs)

compiling script.m

checking types in script.m

abstype implementation error

"push" is bound to value of type: *->**->(**,*)

type expected: [*]->*->[*]

(line 14 of "script.m")

This rule reinforces the principle that programmers should first consider the
nature of the input and output types of their programs before worrying about
the coding details.

4. The interface function definitions could appear anywhere in the program, but
it is sensible programming practice to put them next to their declarations.

Abstract type usage

The following session shows how the makeNat function can be used to create new
instances of nats. The function natPlus is then used to add these two instances:

quantity1 = makeNat 3

quantity2 = makeNat 3

Miranda quantity1

<abstract ob>

Miranda natPlus quantity1 quantity2

<abstract ob>

192 Abstract Types

In all of the above cases, the system response <abstract ob> is new, indicating
that the representation is hidden. The programmer cannot be tempted to bypass
these primitives and attempt direct manipulation of the underlying type. This has
the considerable benefit that the underlying types and implementation details may
be changed with no need to change any application programs that use the abstract
type primitives—this is often termed abstraction.

This point is reinforced by the fact that the only type information available is
the name of the abstype:

Miranda quantity1 ::

nat

Notice that lazy evaluation has the effect that computation is not actually carried
out if there is no value which can be viewed by the user. Thus, in the follow-
ing example, the error function for (makeNat (-3)) is not invoked because the
expression is not evaluated:

Miranda natPlus (makeNat (-3)) (makeNat 3.1)

<abstract ob>

Hiding the implementation means that the only way to access actual values is by
one of the nat primitives. In the final example below, the attempt to display the
value of a nat has caused some evaluation and consequently the error function
has reported that it is not possible to turn a negative number into a nat:

Miranda natdisplay (natLess quantity1 quantity2)

False

Miranda natdisplay (natPlus quantity1 quantity2)

6

Miranda natDisplay (natPlus (makeNat (-3)) (makeNat 3.1))

program error: makeNat : negative input

Exercise 7.1

Provide function definitions for the nat primitives if a recursive underlying data rep-
resentation is used as follows: algnat ::= Zero | Succ algnat.
Exercise 7.2

A date consists of a day, month and year. Legitimate operations on a date include:
creating a date, checking whether a date is earlier or later than another date, adding a
day to a date to give a new date, subtracting two dates to give a number of days, and
checking if the date is within a leap year. Provide an abstract type declaration for a
date.

Simple abstract type definition and usage 193

7.1.1 Polymorphic abstypes

An abstype may also be used to declare a new polymorphic type; in this case,
the name of the new type must be followed by the polytypes which will be used
in the underlying definition. This is demonstrated in the following example of a
sequence.

A double-ended list (sometimes known as a sequence), can be defined such that
all the operations normally occurring at the front of a list (:, hd, tl) have mirror
operations occurring at the end of the list. The basic set of operations provided
are seqNil (which returns an empty sequence), followed by seqConsL, seqConsR,
seqHdL, seqHdR, seqTlL and seqTlR (which provide the normal list operations at
both ends of the sequence); two further functions seqAppend and seqDisplay are
also provided for convenience. This type could be defined recursively or, as shown
below, by extending operations on the built-in list type:

abstype sequence *

with

seqNil :: sequence *

seqConsL :: * -> (sequence *) -> (sequence *)

seqConsR :: (sequence *) -> * -> (sequence *)

seqHdL :: (sequence *) -> *

seqHdR :: (sequence *) -> *

seqTlL :: (sequence *) -> (sequence *)

seqTlR :: (sequence *) -> (sequence *)

seqAppend :: (sequence *) -> (sequence *)

-> (sequence *)

seqDisplay :: (sequence *) -> [*]

sequence * == [*]

seqNil = []

seqConsL = (:)

seqConsR anyseq item = anyseq ++ [item]

|| etc

seqDisplay s = s

Exercise 7.3

Complete the implementation for the sequence abstract type.

194 Abstract Types

7.1.2 Properties of abstract types

Constraints

Five important constraints are imposed on the use of abstract types:

1. The arithmetic operators do not work for values of an abstype, regardless
of the underlying type:

Miranda quantity1 + quantity2

type error in expression

cannot unify nat with num

2. Because the underlying abstract type representation is hidden, it is not pos-
sible to pattern match on an abstract type instance:

wrong equal numbers :: nat -> num -> bool

wrong equal numbers 0 0

= True

wrong equal numbers quantity1 x

= natEqual quantity1 (makeNat x)

incorrect declaration

specified wrong_equal_numbers :: nat -> num -> bool

inferred wrong_equal_numbers :: num -> num -> bool

The above error has occurred because the constant pattern 0 has appeared
as the first argument for the function. The use of 0 as a value of type nat is
restricted to the interface functions; if 0 occurs elsewhere then it is seen to
be a value of type num.

3. The type name for an abstype must be linked to an existing type name
through the use of a type synonym. This defines the underlying type for the
abstype. It is not possible to define the underlying type in any other way—
a potential mistake is to attempt to define the underlying type directly as
an algebraic type. The first example below shows this error, and the second
example demonstrates a correct definition:

Simple abstract type definition and usage 195

abstype wrong lights

with

start light :: wrong lights

next light :: wrong lights -> wrong traffic lights

wrong lights ::= Green | Red | Amber | RedAmber

start light = Green

next light Green = Amber

next light Amber = Red

next light Red = RedAmber

next light RedAmber = Green

compiling script.m

syntax error: nameclash, "wrong_lights" already defined

error found near line 6 of file "script.m"

compilation abandoned

abstype traffic lights

with

start light::traffic lights

next light ::traffic lights -> traffic lights

lights ::= Green | Red | Amber | RedAmber

traffic lights == lights

start light = Green

next light Green = Amber

next light Amber = Red

next light Red = RedAmber

next light RedAmber = Green

4. Only the declared interface functions may access the specified abstype. In
the last example, any other function can be defined to operate upon values
of type lights; what is new is that only the declared interface functions can
operate upon values of type traffic lights. The fact that the underlying
type for traffic lights is lights is not relevant to the rest of the program
because values of the two types cannot be mixed—they are treated as entirely
different types.4

4Note that Miranda does not provide data-hiding as part of its abstype facility, unlike some
other languages, where the underlying type would also be concealed.

196 Abstract Types

5. An abstype can only be defined at the top-level of a Miranda session; for
example, it is not legal to define an abstype within a where block or function
body.

Ordering abstract type values

Values of an abstract type inherit the ordering characteristics of the underlying
type. Thus, if equality and relational ordering are defined on the underlying type
then they will be defined for the abstype values:

Miranda quantity1 <= quantity2

True

However, reliance on the use of the built-in equality and relational operators
severely limits the degree of abstraction achieved by the abstype; if the under-
lying representation of the abstract type is changed then the use of the built-in
operators such as = and < cannot be relied upon. It is therefore recommended
that if ordering primitives are required then they should be provided explicitly as
interface functions.

7.1.3 Converting between abstract types

Sometimes there will be a requirement to convert from one abstract type to an-
other. Initially this may seem difficult, because only the interface functions may
use an abstract type’s data. For example, if a program contains a tree abstract
type (see Section 6.4.2) and a sequence abstract type (see Section 7.1.1), where
should the function tree to sequence be defined? It cannot be defined inside the
tree abstract type because it will not have access to the sequence underlying
representation; similarly, it cannot be defined inside sequence because it will not
have access to the tree underlying representation.

This apparent limitation is solved pragmatically in one of two ways: firstly by
converting to a common intermediate data type; alternatively by coalescing the
two abstract types.

1. If the two abstract types are not closely linked semantically then it is likely
that the conversion mentioned above will not occur often and in this case it
is sufficient to provide a “display” function and a “make” function for each;
these two functions will use an intermediate form based on built-in types in
order to provide the conversion. For example, given the abstract type tree

and the abstract type sequence then the sequence to tree function can
thereafter be defined externally to both abstract types, as is shown in the
following program extract:

Simple abstract type definition and usage 197

|| Define the tree abstract type:

abstype tree *

with

|| etc

tree * == mytree *

mytree * ::= Tnil | Tree (mytree *) * (mytree *)

displayTree Tnil = []

displayTree (Tree ltree node rtree)

= displayTree ltree ++ [node]

++ displayTree rtree

makeTree order alist

= accumulate (insertleaf order) Tnil alist

...

|| Define the sequence abstract type:

abstype sequence *

with

|| etc

sequence * == mysequence *

mysequence * ::= Seq [*]

displaySequence (Seq s) = s

|| etc

|| Define a conversion function:

sequence to tree order

= (makeTree order) . displaySequence

2. By contrast, if conversion between two abstract types is a very frequent
requirement then this implies that they are in fact very closely linked seman-
tically and should therefore be defined in tandem. The sequence to tree

function can then be defined inside the combined abstract type body and will
have access to all the necessary data:

198 Abstract Types

abstype seqtree *

with

sequence to tree:: seqtree * -> seqtree *

tree to sequence:: seqtree * -> seqtree *

|| etc

seqtree * == myseqtree *

mytree * ::= Tnil | Tree (mytree *) * (mytree *)

myseqtree * ::= Seqtree (mytree *) | Seq [*]

sequence to tree (Seq []) = Seqtree Tnil

sequence to tree (Seq (front : rest)) =

|| etc

tree to sequence (Seqtree Tnil) = Seq []

tree to sequence (Seqtree (Tree ltree node rtree)) =

|| etc

7.2 Showing abstract types

Most objects in a Miranda program may be printed by using the built-in function
show. However, there is no built-in method for converting objects with an abstract
type to a printable form. Thus, if show is applied to an object of abstract type, it
will normally print as:

<abstract ob>

This behaviour for the function show may be modified by providing a special
“show” function for a given abstype. The rule for doing this is to include in
the definition of the abstract type a function with the name showfoo (where “foo”
is the name of the abstract type involved). Thereafter, if the built-in function show

is applied to an object of type foo then the function showfoo will automatically
be called.

For example, consider the type traffic lights where it is required to represent
three lights by characters displayed one above the other (red, amber and green from
top to bottom):

Miranda red_light::

traffic_lights

Showing abstract types 199

Miranda show red_light

*

O

O

Miranda show green_light

O

O

*

Miranda show redamber_light

*

*

O

In order for show to work in the above manner, it is necessary to define an extra
interface function called showtraffic lights:

abstype traffic lights

with

start light :: traffic lights

next light :: traffic lights -> traffic lights

showtraffic lights :: traffic lights -> [char]

lights ::= Green | Red | Amber | RedAmber

traffic lights == lights

start light = Green

next light Green = Amber

next light Amber = Red

next light Red = RedAmber

next light RedAmber = Green

showtraffic lights Green = "O\n O\n*\n"

showtraffic lights Red = "*\n O\nO \n"

showtraffic lights Amber = "O\n *\nO \n"

showtraffic lights RedAmber = "*\n *\nO \n"

In the above example, the special-purpose “show” interface function takes one
argument (of type traffic lights) and returns a value of type [char].

200 Abstract Types

Showing polymorphic abstypes

If the abstype involved is polymorphic then the new “show” function must take
an extra argument, which is a function: that is, a function which knows how to
“show” an object of the polymorphic type. In practice, the programmer never has
to provide this additional function when show is applied because it is automatically
provided by Miranda; however, the definition of the new “show” function must
assume that the function is passed as the first argument and must use that function
appropriately. For example, consider an abstype which mirrors the built-in list
type:

abstype list *

with

empty :: list *

add to list :: * -> list * -> list *

showlist :: (* -> [char]) -> list * -> [char]

alglist * ::= Nil list | List * (alglist *)

list * == alglist *

empty = Nil list

add to list x y = List x y

showlist f Nil list = "[]"

showlist f (List x y) = "(" ++ (f x) ++ " : "

++ (showlist y) ++ ")"

The general rule is as follows. Let “foo” be an abstract type name. To make
objects of type “foo” printable, it is necessary to define a “showfoo” such that:

if foo is a simple type (not polymorphic)
showfoo :: foo − > [char]

if foo is polymorphic in one type variable (foo *)
showfoo :: (∗− >[char]) − > foo * − > [char]

if foo is polymorphic in two type variables (foo * **)
showfoo :: (∗− >[char]) − > (∗ ∗ − >[char]) -> foo ∗ ∗ ∗− > [char]

. . . and so on. Note that the show function must be declared in the signature of
the abstract type, and that the name of the function is significant—if it were to
be called banana rather than showfoo then it would not have any effect on the

Further examples of abstract types 201

behaviour of show. Similarly if it is not of the correct type then again it will not
effect show, though in this case the compiler will print a warning message.

Exercise 7.4

Provide a show function for the sequence abstract type.

Exercise 7.5

Assuming that the underlying type for an abstract date type is a three number tuple
(day, month, year), provide functions to display the day and month in US format (month,
day), UK format (day, month) and to display the month as a string, such as “Jan” or
“Feb”.

7.3 Further examples of abstract types

This section now presents two more examples of the use of abstract types. The first
example collects together the functions over a binary tree and presents an elegant
method for providing a generic package for trees. The second, larger, example
shows how an array data structure might be implemented in more than one way
without affecting the way it is used in existing programs.

7.3.1 Trees as abstract types—generic packaging

The major disadvantage of defining a polymorphic search tree is that the ordering
function must always be passed as an explicit parameter to the interface functions
for tree modification and manipulation. This difficulty can be overcome by incor-
porating the ordering function into the data structure definition; thus, it is only
necessary to specify the ordering function when a tree is first created and thereafter
all other interface functions can find the ordering function by inspecting the data
structure. The advantage of using an abstype in this situation is that, once the
tree has been established, the user of the interface functions need not be aware of
the embedded ordering function.

202 Abstract Types

ordering * == (* -> * -> bool)

tree * ::= Tnil

| Tree (tree *) * (tree *)

orderedTree * ::= OrderedTree (ordering *) (tree *)

abstype absTree *

with

newtree :: ordering * -> absTree *

insertleaf :: absTree * -> * -> absTree *

flatten :: absTree * -> [*]

absTree * == orderedTree *

newtree order = OrderedTree order Tnil

insertleaf (OrderedTree order anytree) item

= OrderedTree order (insert anytree)

where

insert Tnil = Tree Tnil item Tnil

insert (Tree ltree node rtree)

= Tree (insert ltree) node rtree,

if (order item node)

= Tree ltree node (insert rtree),

otherwise

flatten (OrderedTree order anytree)

= inorder anytree

where

inorder Tnil = []

inorder (Tree ltree node rtree)

= inorder ltree ++ [node] ++ inorder rtree

Instances of this absTree can be created by passing the appropriate sorting func-
tion, for example:

lessthan :: num -> num -> bool

lessthan = (<)

num absTree :: absTree num

num absTree = newtree lessthan

Thus, an absTree in increasing numeric order might be as shown in Figure 7.1.

Further examples of abstract types 203

Figure 7.1 Sample Atree.

Exercise 7.6

An alternative representation of the Atree would be:

abstype other_tree *

with

|| declarations

ordering * == * -> * -> bool

other_tree * ::= Anil (ordering *)

| ATree (ordering *) (other_tree *) * (other_tree *)

What would be the consequences for the abstract type implementation?

7.3.2 Arrays as abstract types—alternative implementations

The following example demonstrates the usefulness of concealing a particular rep-
resentation of an abstract type from the programmer. The first implementation of
array could be replaced by an implementation as a list of tuples, without altering
its public interface.

An array as a list of lists

This implementation shows an abstract type representation of a two-dimensional
array, where an array may be defined as a fixed size aggregate data structure whose
elements may be changed or retrieved by reference to an index.

204 Abstract Types

A two-dimensional array data structure can very easily be represented as a list
of lists (where the innermost lists represent the rows of the array). The function
definitions are fairly straightforward but rely upon the existence of some of the
list handling functions introduced in Chapter 3 and some of the higher order func-
tions of Chapter 4. As recommended for larger programs, the implementation is
presented as a literate script:

>|| List of lists array representation. (Page 1 of 2)

> abstype array *

> with

> num rows :: array * -> num

> num cols :: array * -> num

> init array :: num -> num -> * -> array *

> change item :: array * -> num -> num -> * -> array *

> get item :: array * -> num -> num -> *

> array * == [[*]]

> num rows anarray = # anarray

> num cols [] = 0

> num cols anarray = # (hd anarray)

replace applies a function ff to a item in a list

giving an identical list except that the item is

replaced by the result of the function application

> replace :: num -> (*->*) -> [*] -> [*]

> replace pos ff anylist

> = error "replace: illegal position",

> if (pos > # anylist) \/ (pos <= 0)

> = (take (pos - 1) anylist)

> ++ [ff (get nth pos anylist)]

> ++ (drop pos anylist), otherwise

>get nth :: num -> [*] -> *

>get nth n anylist

> = anylist ! (n - 1)

Further examples of abstract types 205

>|| List of lists array representation continued (Page 2)

init array produces an initial array from:

i. how many rows and columns the array should have

ii. and a starting value for all the elements.

repeat creates a list of the right length to represent

a row, and also constructs an array of many such rows.

> init array nrows ncols first val

> = error "init array: negative rows",

> if nrows < 0

> = error "init array: negative columns",

> if ncols < 0

> = hd [a | b<-[take nrows (repeat x)];

> a<-[take ncols (repeat b)]], otherwise

change item returns the input array with an altered item.

replace’s outer application finds the appropriate row and

its inner application is applied to that row to replace

the item in the column position with a new value using the

built-in combinator const (cf cancel as shown in Chapter 4).

The inner use of replace is a partial application, it is

not fully evaluated until the appropriate row has been

selected.

> change item anarray row column newvalue

> = error "change item: illegal position",

> if (row <= 0) \/ (column <= 0)

> \/ (row > num rows anarray)

> \/ (column > num cols anarray)

> = replace row (replace column (const newvalue)) anarray,

> otherwise

> get item anarray row column

> = error "get item: illegal position",

> if (row <= 0) \/ (column <= 0)

> \/ (row > num rows anarray)

> \/ (column > num cols anarray)

> = get nth column (get nth row anarray), otherwise

206 Abstract Types

The array primitives can now be used directly in programs and also to build more
complex utilities:

> get col :: array * -> num -> [*]

> get col anarray column

> = error "get col: illegal column number",

> if (column <= 0) \/ (column > num cols anarray)

> = map (converse (get item anarray) column)

> [1..(num rows x)], otherwise

> get row :: array * -> num -> [*]

> get row anarray row

> = error "get row: illegal row number",

> if (row <= 0) \/ (row > num rows anarray)

> = map (get item anarray row)

> [1..(num cols x)], otherwise

An array as a list of tuples

The first implementation of the array can now be replaced with an implementation
as a list of tuples, without changing the interface function signatures and therefore
without the need to change any part of any program that uses such an array type.

>|| list of tuples array representation. (Page 1 of 2)

> abstype array *

> with

> num rows :: array * -> num

> num cols :: array * -> num

> init array :: num -> num -> * -> array *

> change item :: array * -> num -> num -> * -> array *

> get item :: array * -> num -> num -> *

> array * == (num,num,*,[(num,num,*)])

The array is represented by its dimensions (nrows * ncols),

a value (default) for all items that have not been updated,

together with a list of tuples representing the row and

column position and new value of any updated item "changes"

> num rows (nrows, ncols, default, changes) = nrows

> num cols (nrows, ncols, default, changes) = ncols

Further examples of abstract types 207

>|| list of tuples array representation. (Page 2)

> init array nrows ncols default

> = error "init array: inappropriate dimensions",

> if (nrows < 0) \/ (ncols < 0)

> \/ anyfractional [nrows,ncols]

> = (nrows, ncols, default, []), otherwise

Changing an item involves removing the changes list entry and

appending the new entry. There is no check whether the new

value differs from the existing entry or the default value

> change item (nrows,ncols,default,changes) row col newvalue

> = error "change item: inappropriate dimensions",

> if invalid nrows ncols row col

> = (nrows,ncols,default,newchanges), otherwise

> where

> newchanges

> = (filter ((~) . (compare row col)) changes)

> ++ [(row,col,newvalue)]

Getting an item involves filtering it from the changes list;

if there is no entry then the default entry becomes the head

of the items list otherwise it is ignored.

> get item (nrows,ncols,default,changes) row col

> = error "get item: inappropriate dimensions",

> if invalid nrows ncols row col

> = (third . hd) items, otherwise

> where

> third (row, col,value) = value

> items = (filter (compare row col) changes)

> ++ [(row,col,default)]

> compare row1 col1 (row2, col2, item)

> = (row1 = row2) & (col1 = col2)

> anyfractional nlist = and (map ((~) . integer) nlist)

> invalid nrows ncols row col

> = (row > nrows) \/ (row <= 0) \/ (col > ncols) \/

> (col <= 0) \/ anyfractional [nrows,nrows,col,ncols]

208 Abstract Types

The functions get col and get row defined using the first (list of lists) version
of array can now be substituted with the second (list of tuples) version without

modification of the existing code; all that is necessary is to recompile the program,
to ensure that the new representation is used throughout (recompilation will be
done automatically on exit from the editor).

Exercise 7.7

A queue aggregate data structure (Standish, 1980) can be defined as either being
empty or as consisting of a queue followed by an element; operations include creating a
new queue, inserting an element at the end of a queue and removing the first element
in a queue. The following declares a set of primitives for a polymorphic abstract type
queue:

abstype queue *

with

qisempty = queue * -> bool

qtop = queue * -> *

qinsert = queue * -> * -> queue *

qcreate = queue *

Provide an implementation for this abstract type.

7.4 Guidelines for abstract type primitive selection

Apart from the criterion that an abstype must provide all the operations that are
necessary and sufficient to manipulate the underlying type, there are no other rigid
rules to determine which functions should be provided to make the abstract type
easy to use. Two of the necessary primitives for all abstract types are creation

and inspection. Many abstract types will also have initialization and modification

primitives, the former sometimes being incorporated into the creation primitive (as
with the abstree definition). A useful set is an initialization primitive to create an
“empty” object, together with a modification primitive to change the underlying
value and an inspection primitive to view that value—this works particularly well
when the underlying type is a recursive algebraic type. Furthermore, it is often
useful to provide the equivalents of map and reduce for the abstract type. It is
however unwise to provide too large a set of primitive functions, because this will
tend to reinforce the current underlying representation and make it difficult to
make future changes to this representation.

For example, the above array implementation provided primitives for creating
a new array, together with those for inspecting and changing one element. It can
be shown that these three are sufficient for array manipulation, but in practice an

Summary 209

equality primitive and functions to extract the contents of a row or column would
probably be provided. Indeed, for many abstract types it will often be the case
that additional functions, which build on the basic primitives, should be offered by
the abstract type implementor. The rationale for this is threefold:

1. To eliminate programmer effort and potential error, by writing these “non-
essential” primitives once only.

2. To provide efficient implementations based on a knowledge of the underlying
algebraic type representation.

3. There is sometimes a choice of which primitives comprise a necessary and
sufficient set of operations. For example, an abstract type for binary Boolean
algebra could be represented by a unary not operator, together with a dyadic
and operator; or by not , together with the dyadic or operator. In this case, it
is obvious that both dyadic operators should be provided to reflect different
programmers’ views of the data.

Notice that it is always safe to change an abstract type’s underlying representation
in order to extend the functionality of the type; however it is not safe to decrease
the number of interface functions without potentially affecting parts of the program
already written.

Finally, there are many instances of general purpose types (such as the coords

algebraic type) for which it is not possible to predict an adequate and easy to use
set of primitives. For these types it does not make sense to force them into an
abstract type.5

7.5 Summary

This chapter has extended the principle of strong typing introduced in Chapter 1
and emphasized throughout this book. The use of abstract types helps to ensure
that values of a certain type (a basic type or a new type) are only operated on by
appropriately defined functions. Not only does this help to detect errors, it also
serves to document the program and helps to keep the program structure clear.

This mechanism also extends the principle of structured programming discussed
in Chapter 5 to show how a programmer can have safer and more reusable code.
The abstype code is generally code that will be used by many programmers for
different applications and can be provided in a library with the underlying imple-
mentation hidden from the application programmers.

Large-scale programming benefits enormously from the rigorous application of
the concepts of closure, modularity, encapsulation and self-documentation, as de-
scribed and recommended throughout this book.

5However, it may be reasonable to encapsulate a “library” of related operations in a file, as
shown in Chapter 9

